Skip to main content
Log in

The spherical constraint in Boolean quadratic programs

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose a new approach to bound Boolean quadratic optimization problems. The idea is to re-express the Boolean constraints as one “spherical” constraint, whose dualization amounts to semidefinite least-squares problems. Studying this dualization provides an alternative interpretation of the sdp relaxation. It also reveals a new class of non-convex problems with no duality gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anjos M. and Wolkowicz H. (2002). Strenghened semidefinite relaxations via a second lifting for the max-cut problem. Discrete Appl. Math. 119: 79–106

    Article  Google Scholar 

  • Borwein J. and Lewis A.S. (2000). Convex Analysis and Nonlinear Optimization. Springer Verlag, New York

    Google Scholar 

  • Burer S. and Monteiro R.D.C. (2003). A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. (Series B) 95: 329–357

    Article  Google Scholar 

  • Beltran-Royo, C., Vial, J.Ph., Alonso-Ayuso, A.: Solving the uncapacitated facility location problem with semi-lagrangian relaxation. Available on optimization-on-line (2007)

  • Bazaraa, M., Sherali, H., Shetty, C.M.: Nonlinear Programming, Theory and Algorithms, 2nd ed. John Wiley & Sons (1993)

  • Ben-Tal, R., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS-SIAM Series on Optimization. Siam Publications (2001)

  • Beltran C., Tadonki C. and Vial J.Ph. (2006). Solving the p-median problem with a semi-lagrangian relaxation. Comput. Opt. Appl. 35(2): 239–260

    Article  Google Scholar 

  • Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North Holland (1976); reprinted by SIAM (1999)

  • Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, Chichester (second edition) (1987)

  • Goemans, M., Rendl, F.: Combinatorial optimization. In: Wolkovicz, H., Saigal, R., Vandenberghe, L. (ed.) Handbook on Semidefinite Programming. Theory, Algorithms and Applications. Kluwer (2000)

  • Goemans M.X. and Williamson D.P. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 6: 1115–1145

    Article  Google Scholar 

  • Higham N. (2002). Computing a nearest symmetric correlation matrix – a problem from finance. IMA J. Num. Anal. 22(3): 329–343

    Article  Google Scholar 

  • Horn, R.A., Johnson, Ch.R.: Matrix Analysis. Cambridge University Press (1989) (New edition, 1999)

  • Huang H., Pardalos P. and Prokopyev O. (2006). Lower bound improvement and forcing rule for quadratic binary programming. Comput. Opt. Appl. 33: 187–208

    Article  Google Scholar 

  • Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publisher (2000)

  • Helmberg C. and Rendl F. (2000). A spectral bundle method for semidefinite programming. SIAM J. Opt. 10(3): 673–696

    Article  Google Scholar 

  • Hiriart-Urruty, J.-B., Lemaréchal C.: Convex Analysis and Minimization Algorithms. Springer Verlag, Heidelberg (1993) Two volumes

  • Hiriart-Urruty J.-B. and Lemaréchal C. (2001). Fundamentals of Convex Analysis. Springer Verlag, Heidelberg

    Google Scholar 

  • Karp R.M. (1972). Reducibility among combinatorial problems. In: Miller, R.E. and Thatcher, J.W. (eds) Complexity of Computer Computation, pp 85–103. Plenum Press, New York

    Google Scholar 

  • Lasserre J.-B. (2002). Semidefinite programming vs. LP relaxation for polynomial programming. Math. Operat. Res. 27(2): 347–360

    Article  Google Scholar 

  • Laurent M. (2003). A comparison of the Sherali-Adams, Lovasz-Schrijver and Lasserre relaxations for 0-1 programming. Math. Operat. Res. 28(3): 470–496

    Article  Google Scholar 

  • Lemaréchal C.  (2001). Lagrangian relaxation. In: Jünger, M. and Naddef, D. (eds) Computational Combinatorial Optimization, pp 112–156. Springer Verlag, Heidelberg

    Chapter  Google Scholar 

  • Lemaréchal, C., Oustry, F.: Semidefinite relaxations and Lagrangian duality with application to combinatorial optimization. Rapport de Recherche 3710, INRIA (1999)

  • Lovász L. (1979). On the Shannon capacity of a graph. IEEE Trans. Inform. Theor. IT 25: 1–7

    Article  Google Scholar 

  • Malick J. (2004). A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26(1): 272–284

    Article  Google Scholar 

  • Mangasarian O.L. (1981). Iterative solution of linear programs. SIAM J. Numer. Anal. 18(4): 606–614

    Article  Google Scholar 

  • McBridge R.D. and Yormark J.S. (1980). An implicit enumeration algorithm for quadratic integer programming. Manage. Sci. 26(3): 282–296

    Article  Google Scholar 

  • Nesterov, Yu., Wolkowicz, H., Ye, Y.: Semidefinite programming relaxations of nonconvex quadratic optimization. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Hanbook on Semidefinite Programming. Theory, Algorithms and Applications. Kluwer (2000)

  • Pardalos P., Iasemidis L.D., Sackellares J.C., Chaovalitwongse W., Carney P., Prokopyev O., Yatsenko V. and Shiau D.-S. (2004). Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. 101: 365–385

    Google Scholar 

  • Poljak S., Rendl F. and Wolkowicz H. (1995). A recipe for semidefinite relaxation for (0,1)-quadratic programming. J. Global Opt. 7: 51–73

    Article  Google Scholar 

  • Qi H. and Sun D. (2006). Quadratic convergence and numerical experiments of Newton’s method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28: 360–385

    Google Scholar 

  • Scilab Consortium. http://www.scilab.org

  • Saigal, R., Vandenberghe, L., Wolkowicz, H.: Handbook of Semidefinite-Programming. Kluwer (2000)

  • Smith P.W. and Wolcowicz H. (1986). A nonlinear equation for linear programming. Math. Program. 34(2): 235–238

    Article  Google Scholar 

  • Takouda, P.L.: Problèmes d’approximation matricielle linéaires coniques: Approches par projections et via Optimisation sous contraintes de semidéfinie positivité. PhD thesis, Université Paul Sabatier–Toulouse III (2003)

  • Tutuncu, R.H., Toh, K.C., Todd, M.J.: Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. (Submitted) (2005)

  • Wolkowicz H. and Styan G.P.H. (1980). A history of Samuelson’s inequality. Amer. Statist. 34: 250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Malick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malick, J. The spherical constraint in Boolean quadratic programs. J Glob Optim 39, 609–622 (2007). https://doi.org/10.1007/s10898-007-9161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9161-1

Keywords

Navigation