Skip to main content
Log in

Fluence-dependent effects of low-level laser therapy in myofascial trigger spots on modulation of biochemicals associated with pain in a rabbit model

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Evidence strongly supports that low-level laser therapy (LLLT) is an effective physical modality for the treatment of pain associated with myofascial trigger points (MTrP). However, the effect of laser fluence (energy intensity in J/cm2) on biochemical regulation related to pain is unclear. To better understand the biochemical mechanisms modulated by high- and low-fluence LLLT at myofascial trigger spots (MTrSs; similar to human MTrPs) in skeletal muscles of rabbits, the levels of β-endorphin (β-ep), substance P (SP), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) were investigated in this study. New Zealand rabbits (2.5–3.0 kg in weight) were used in this study. High-fluence LLLT (27 J/cm2), low-fluence LLLT (4.5 J/cm2), or sham operations were applied on MTrSs of biceps femoris of rabbits for five sessions (one session per day). Effects of LLLT at two different fluences on biceps femoris, dorsal root ganglion (DRG), and serum were determined by β-ep, SP, TNF-α, and COX-2 immunoassays. LLLT irradiation with fluences of 4.5 and 27 J/cm2 at MTrSs can significantly reduce SP level in DRG. LLLT with lower fluence of 4.5 J/cm2 exerted lower levels of TNF-α and COX-2 expression in laser-treated muscle, but LLLT with higher fluence of 27 J/cm2 elevated the levels of β-ep in serum, DRG, and muscle. This study demonstrated fluence-dependent biochemical effects of LLLT in an animal model on management of myofascial pain. The findings can contribute to the development of dosage guideline for LLLT for treating MTrP-induced pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Simons DG (1995) The nature of myofascial trigger points. Clin J Pain 11(1):83–84

    Article  CAS  PubMed  Google Scholar 

  2. Hong CZ (2008) Research on myofascial pain syndrome. Crit Rev Phys Rehabil Med 20(4):343–366

    Article  Google Scholar 

  3. Ramsook RR, Malanga GA (2012) Myofascial low back pain. Curr Pain Headache Rep 16(5):423–432

    Article  PubMed  Google Scholar 

  4. Gur A, Sarac AJ, Cevik R, Altindag O, Sarac S (2004) Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomize-controlled trial. Lasers Surg Med 35(3):229–235

    Article  PubMed  Google Scholar 

  5. Ilbuldu E, Cakmak A, Disci R, Aydin R (2004) Comparison of laser, dry needling, and placebo laser treatments in myofascial pain syndrome. Photomed Laser Surg 22(4):306–311

    Article  PubMed  Google Scholar 

  6. Uemoto L, Nascimento de Azevedo R, Almeida Alfaya T, Nunes Jardim Reis R, Depes de Gouvea CV, Cavalcanti Garcia MA (2013) Myofascial trigger point therapy: laser therapy and dry needling. Curr Pain Headache Rep 17(9):357

    Article  PubMed  Google Scholar 

  7. Dundar U, Evcik D, Samli F, Pusak H, Kavuncu V (2007) The effect of gallium arsenide aluminum laser therapy in the management of cervical myofascial pain syndrome: a double blind, placebo-controlled study. Clin Rheumatol 26(6):930–934

    Article  CAS  PubMed  Google Scholar 

  8. Altan L, Bingol U, Aykac M, Yurtkuran M (2005) Investigation of the effect of GaAs laser therapy on cervical myofascial pain syndrome. Rheumatol Int 25(1):23–27

    Article  PubMed  Google Scholar 

  9. Hsieh YL, Hong CZ (2010) Laser therapy for myofascial pain. Crit Rev Phys Rehabil Med 22(1–4):241–278

    Article  Google Scholar 

  10. Chen KH, Hong CZ, Kuo FC, Hsu HC, Hsieh YL (2008) Electrophysiologic effects of a therapeutic laser on myofascial trigger spots of rabbit skeletal muscles. Am J Phys Med Rehabil 87(12):1006–1014

    Article  PubMed  Google Scholar 

  11. Chen KH, Hong CZ, Hsu HC, Wu SK, Kuo FC, Hsieh YL (2010) Dose-dependent and ceiling effects of therapeutic laser on myofascial trigger spots in rabbit skeletal muscles. J Musculoskelet Pain 18(3):235–245

    Article  Google Scholar 

  12. Hsieh YL, Yang SA, Yang CC, Chou LW (2012) Dry needling at myofascial trigger spots of rabbit skeletal muscles modulates the biochemicals associated with pain, inflammation, and hypoxia. Evid Based Complement Alternat Med 2012:342165

    PubMed Central  PubMed  Google Scholar 

  13. Lembeck F, Donnerer J (1985) Opioid control of the function of primary afferent substance P fibres. Eur J Pharmacol 114(3):241–246

    Article  CAS  PubMed  Google Scholar 

  14. Zimmermann M (1986) Ethical considerations in relation to pain in animal experimentation. Acta Physiol Scand Suppl 554:221–233

    CAS  PubMed  Google Scholar 

  15. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  CAS  PubMed  Google Scholar 

  16. Hsieh YL, Chou LW, Joe YS, Hong CZ (2011) Spinal cord mechanism involving the remote effects of dry needling on the irritability of myofascial trigger spots in rabbit skeletal muscle. Arch Phys Med Rehabil 92(7):1098–1105

    Article  PubMed  Google Scholar 

  17. Hong CZ, Torigoe Y (1994) Electrophysiologic characteristics of localized twitch responses in responsive bands of rabbit skeletal muscle fibers. J Musculoskelet Pain 2(2):17–43

    Article  Google Scholar 

  18. Wood PL (1984) Animal models in analgesic testing. In: Kuhar MJ, Pasternak GW (eds) Central nervous system pharmacology. Analgesics: neurochemical, behavioral and clinical perspective. Raven, New York, pp 175–194

    Google Scholar 

  19. Carrasco TG, Guerisoli LD, Guerisoli DM, Mazzetto MO (2009) Evaluation of low intensity laser therapy in myofascial pain syndrome. Cranio 27(4):243–247

    PubMed  Google Scholar 

  20. Gross AR, Dziengo S, Boers O, Goldsmith CH, Graham N, Lilge L, Burnie S, White R (2013) Low level laser therapy (LLLT) for neck pain: a systematic review and meta-regression. Open Orthop J 7:396–419

    Article  PubMed Central  PubMed  Google Scholar 

  21. Gur A, Karakoc M, Nas K, Cevik R, Sarac J, Ataoglu S (2002) Effects of low power laser and low dose Amitriptyline therapy on clinical symptoms and quality of life in fibromyalgia: a single-blind, placebo-controlled trial. Rheumatol Int 22(5):188–193

    Article  CAS  PubMed  Google Scholar 

  22. Uemoto L, Garcia MA, Gouvea CV, Vilella OV, Alfaya TA (2013) Laser therapy and needling in myofascial trigger point deactivation. J Oral Sci 55(2):175–181

    Article  PubMed  Google Scholar 

  23. Demirkol N, Sari F, Bulbul M, Demirkol M, Simsek I, Usumez A (2014) Effectiveness of occlusal splints and low-level laser therapy on myofascial pain. Lasers Med Sci. (in press)

  24. Hakguder A, Birtane M, Gurcan S, Kokino S, Turan FN (2003) Efficacy of low level laser therapy in myofascial pain syndrome: an algometric and thermographic evaluation. Lasers Surg Med 33(5):339–343

    Article  PubMed  Google Scholar 

  25. Laakso EL, Richardson C, Cramond T (1997) Pain scores and side effects in response to low level laser therapy (LLLT) for myofascial trigger points. Laser Ther 9:67–72

    Article  Google Scholar 

  26. Shirani AM, Gutknecht N, Taghizadeh M, Mir M (2009) Low-level laser therapy and myofacial pain dysfunction syndrome: a randomized controlled clinical trial. Lasers Med Sci 24(5):715–720

    Article  PubMed  Google Scholar 

  27. Chow RT, David MA, Armati PJ (2007) 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: implications for the analgesic effects of 830 nm laser. J Peripher Nerv Syst 12(1):28–39

    Article  PubMed  Google Scholar 

  28. Yamada S, Kawate T, Sakamoto H, Aoki K, Hamada Y, Atsumi S (2006) Cyclo-oxygenase-2-immunoreactive neurons in the lumbar dorsal horn in a chicken acute inflammation model. Anat Sci Int 81(3):164–172

    Article  CAS  PubMed  Google Scholar 

  29. Khan S, Shehzad O, Chun J, Kim YS (2013) Mechanism underlying anti-hyperalgesic and anti-allodynic properties of anomalin in both acute and chronic inflammatory pain models in mice through inhibition of NF-kappaB, MAPKs and CREB signaling cascades. Eur J Pharmacol 718(1–3):448–458

    Article  CAS  PubMed  Google Scholar 

  30. Gu G, Kondo I, Hua XY, Yaksh TL (2005) Resting and evoked spinal substance P release during chronic intrathecal morphine infusion: parallels with tolerance and dependence. J Pharmacol Exp Ther 314(3):1362–1369

    Article  CAS  PubMed  Google Scholar 

  31. Pires D, Xavier M, Araujo T, Silva JA Jr, Aimbire F, Albertini R (2011) Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci 26(1):85–94

    Article  PubMed  Google Scholar 

  32. de Almeida P, Lopes-Martins RA, Tomazoni SS, Albuquerque-Pontes GM, Santos LA, Vanin AA, Frigo L, Vieira RP, Albertini R, de Carvalho Pde T, Leal-Junior EC (2013) Low-level laser therapy and sodium diclofenac in acute inflammatory response induced by skeletal muscle trauma: effects in muscle morphology and mRNA gene expression of inflammatory markers. Photochem Photobiol 89(2):501–507

    Article  PubMed  Google Scholar 

  33. Peres e Serra A, Ashmawi HA (2010) Influence of naloxone and methysergide on the analgesic effects of low-level laser in an experimental pain model. Rev Bras Anestesiol 60(3):302–310

    Article  CAS  PubMed  Google Scholar 

  34. Aimbire F, Lopes-Martins RA, Castro-Faria-Neto HC, Albertini R, Chavantes MC, Pacheco MT, Leonardo PS, Iversen VV, Bjordal JM (2006) Low-level laser therapy can reduce lipopolysaccharide-induced contractile force dysfunction and TNF-alpha levels in rat diaphragm muscle. Lasers Med Sci 21(4):238–244

    Article  CAS  PubMed  Google Scholar 

  35. de Almeida P, Lopes-Martins RA, Tomazoni SS, Silva JA Jr, de Carvalho Pde T, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87(5):1159–1163

    Article  PubMed  Google Scholar 

  36. Hagiwara S, Iwasaka H, Okuda K, Noguchi T (2007) GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med 39(10):797–802

    Article  PubMed  Google Scholar 

  37. Hong CZ, Simons DG (1998) Pathophysiologic and electrophysiologic mechanisms of myofascial trigger points. Arch Phys Med Rehabil 79(7):863–872

    Article  CAS  PubMed  Google Scholar 

  38. Kao MJ, Han TI, Kuan TS, Hsieh YL, Su BH, Hong CZ (2007) Myofascial trigger points in early life. Arch Phys Med Rehabil 88(2):251–254

    Article  PubMed  Google Scholar 

  39. Han TI, Hong CZ, Kuo FC, Hsieh YL, Chou LW, Kao MJ (2012) Mechanical pain sensitivity of deep tissues in children—possible development of myofascial trigger points in children. BMC Musculoskelet Disord 13:13

    Article  PubMed Central  PubMed  Google Scholar 

  40. Shah JP, Danoff JV, Desai MJ, Parikh S, Nakamura LY, Phillips TM, Gerber LH (2008) Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points. Arch Phys Med Rehabil 89(1):16–23

    Article  PubMed  Google Scholar 

  41. Ge HY, Fernandez-de-Las-Penas C, Yue SW (2011) Myofascial trigger points: spontaneous electrical activity and its consequences for pain induction and propagation. Chin Med 6:13

    Article  PubMed Central  PubMed  Google Scholar 

  42. Melis M, Di Giosia M, Zawawi KH (2012) Low level laser therapy for the treatment of temporomandibular disorders: a systematic review of the literature. Cranio 30(4):304–312

    PubMed  Google Scholar 

  43. Thorsen H, Gam AN, Svensson BH, Jess M, Jensen MK, Piculell I, Schack LK, Skjott K (1992) Low level laser therapy for myofascial pain in the neck and shoulder girdle. A double-blind, cross-over study. Scand J Rheumatol 21(3):139–141

    Article  CAS  PubMed  Google Scholar 

  44. Wang RY (1995) Effects of semiconductor cold laser on trigger points of upper back myofascial pain. Formos J Phys Ther 20(1):1–9

    CAS  Google Scholar 

  45. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908

    Article  PubMed  Google Scholar 

  46. Djavid GE, Mehrdad R, Ghasemi M, Hasan-Zadeh H, Sotoodeh-Manesh A, Pouryaghoub G (2007) In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise alone in the long term: a randomised trial. Aust J Physiother 53(3):155–160

    Article  PubMed  Google Scholar 

  47. Chou LW, Hsieh YL, Kao MJ, Hong CZ (2009) Remote influences of acupuncture on the pain intensity and the amplitude changes of endplate noise in the myofascial trigger point of the upper trapezius muscle. Arch Phys Med Rehabil 90(6):905–912

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of National Science Council (NSC 101-2314-B039-003-MY2, NSC 101-2314-B241-001), Cheng Ching Hospital and China Medical University (CMU-101-S-35), Taiwan.

Conflict of interest

No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the authors or upon any organization with which the authors are associated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueh-Ling Hsieh or Chen-Chia Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, YL., Hong, CZ., Chou, LW. et al. Fluence-dependent effects of low-level laser therapy in myofascial trigger spots on modulation of biochemicals associated with pain in a rabbit model. Lasers Med Sci 30, 209–216 (2015). https://doi.org/10.1007/s10103-014-1654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1654-9

Keywords

Navigation