Skip to main content

Advertisement

Log in

Biotic and Abiotic Constraints on the Decomposition of Fagus sylvatica Leaf Litter Along an Altitudinal Gradient in Contrasting Land-Use Types

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Climate change can affect the process of carbon cycling and leaf litter decomposition in multiple ways, both directly and indirectly, though the strength and direction of this relationship is often context dependent. In this experiment, we followed decomposition of a standard litter type—senescent leaves of Fagus sylvatica collected from a single location—along a 1000 m altitudinal gradient of four sites over 2.5 years. To control the edaphic conditions, we transplanted intact turf mesocosms from three different land-use types [densely wooded, sparsely wooded, and unwooded (UW) pastures] from the highest altitude site into UW pastures along the altitudinal gradient from the moist, cool high-elevation site to the dry, warm low-elevation site, using shade cloth to mimic the light conditions in the original habitats. Decomposition in the drier UW pasture mesocosms increased with altitude, likely because of higher moisture at the highest sites. Decomposition in the more mesic mesocosms from sparsely and densely wooded sites was insensitive to altitude, suggesting an overriding moisture, rather than temperature, constraint on decomposition across these sites. The functional composition of decomposer microbial communities (fungal/bacterial ratio) was similarly insensitive to altitude. Our findings bring substantial evidence for the controlling role of soil moisture on litter decomposition, as well as for the indirect effects of climate through changes in the decomposer community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aerts R. 2006. The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–24.

    Article  Google Scholar 

  • Allison SD, Lu Y, Weihe C, Goulden ML, Martiny AC, Treseder KK, Martiny JBH. 2013. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94:714–25.

    Article  PubMed  Google Scholar 

  • Andersen R, Grasset L, Thormann MN, Rochefort L, Francez AJ. 2010. Changes in microbial community structure and function following Sphagnum peatland restoration. Soil Biol Biochem 42:291–301.

    Article  CAS  Google Scholar 

  • Bai E, Li SL, Xu WH, Li W, Dai WW, Jiang P. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol 199:431–40.

    Article  CAS  PubMed  Google Scholar 

  • Baptist F, Yoccoz N, Choler P. 2010. Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant Soil 328:397–410.

    Article  CAS  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. 2005. A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–41.

    Article  PubMed  Google Scholar 

  • Bardgett RD, Hobbs PJ, Frostegard A. 1996. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–4.

    Article  Google Scholar 

  • Bardgett RD, Manning P, Morrien E, De Vries FT. 2013. Hierarchical responses of plant-soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101:334–43.

    Article  Google Scholar 

  • Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Korner C, de Boeck HJ, Christensen JH, Leuzinger S, Janssens IA, Hansen K. 2012. Precipitation manipulation experiments—challenges and recommendations for the future. Ecol Lett 15:899–911.

    Article  PubMed  Google Scholar 

  • Bray SR, Kitajima K, Mack MC. 2012. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol Biochem 49:30–7.

    Article  CAS  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA. 2002. Terrestrial decomposition. In: Chapin FSIII, Matson PA, Mooney HA, Eds. Principles of Terrestrial Ecosystem Ecology. New York: Springer. p 151.

    Google Scholar 

  • Cornelissen JHC. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–82.

    Article  Google Scholar 

  • Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Chapin FS, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jonsdottir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenstrom A, Tolvanen A, Totland O, Wada N, Welker JM, Zhao XQ. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–27.

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–71.

    Article  PubMed  Google Scholar 

  • Cottingham KL, Lennon JT, Brown BL. 2005. Knowing when to draw the line: designing more informative ecological experiments. Front Ecol Environ 3:145–52.

    Article  Google Scholar 

  • Couteaux MM, Bottner P, Berg B. 1995. Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–6.

    Article  CAS  PubMed  Google Scholar 

  • Crossley DA, Hoglund MP. 1962. Litter-bag method for study of microarthropods inhabiting leaf litter. Ecology 43:571–3.

    Article  Google Scholar 

  • de Vries FT, Liiri ME, Bjornlund L, Bowker MA, Christensen S, Setala HM, Bardgett RD. 2012. Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Change 2:276–80.

    Article  Google Scholar 

  • Duboc O, Zehetner F, Djukic I, Tatzber M, Berger TW, Gerzabek MH. 2012. Decomposition of European beech and Black pine foliar litter along an Alpine elevation gradient: mass loss and molecular characteristics. Geoderma 189:522–31.

    Article  Google Scholar 

  • Engqvist L. 2005. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim Behav 70:967–71.

    Article  Google Scholar 

  • Gavazov K, Spiegelberger T, Buttler A. 2014. Transplantation of subalpine wood-pasture turfs along a natural climatic gradient reveals lower resistance of unwooded pastures to climate change compared to wooded ones. Oecologia 174:1425–35.

    Article  PubMed  Google Scholar 

  • Gavazov KS. 2010. Dynamics of alpine plant litter decomposition in a changing climate. Plant Soil 337:19–32.

    Article  CAS  Google Scholar 

  • Green BF, Tukey JW. 1960. Complex analyses of variance: general problems. Psychometrika 25:127–52.

    Article  Google Scholar 

  • Houghton RA. 2007. Balancing the global carbon budget. Ann Rev Earth Planet Sci 35:313–47.

    Article  CAS  Google Scholar 

  • Körner C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Berlin, Heidelberg, New York: Springer.

    Book  Google Scholar 

  • Körner C. 2007. The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–74.

    Article  PubMed  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen an lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–6.

    Article  CAS  Google Scholar 

  • Mueller B, Seneviratne SI. 2012. Hot days induced by precipitation deficits at the global scale. Proc Nat Acad Sci USA 109:12398–403.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy KL, Klopatek JM, Klopatek CC. 1998. The effects of litter quality and climate on decomposition along an elevational gradient. Ecol Appl 8:1061–71.

    Article  Google Scholar 

  • Nogues-Bravo D, Araujo MB, Errea MP, Martinez-Rica JP. 2007. Exposure of global mountain systems to climate warming during the 21st century. Glob Environ Change Hum Policy Dimens 17:420–8.

    Article  Google Scholar 

  • Olson JS. 1963. Energy-storage and balance of producers and decomposers in ecological-systems. Ecology 44:322–31.

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–4.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, The R Development Core Team. 2012. nlme: linear and nonlinear mixed effects models. R package version 3.1-104.

  • Robinson CH. 2002. Controls on decomposition and soil nitrogen availability at high latitudes. Plant Soil 242:65–81.

    Article  CAS  Google Scholar 

  • Rutigliano FA, Alfani A, Bellini L, De Santo AV. 1998. Nutrient dynamics in decaying leaves of Fagus sylvatica L. and needles of Abies alba Mill. Biol Fertil Soils 27:119–26.

    Article  CAS  Google Scholar 

  • Saccone P, Morin S, Baptist F, Bonneville JM, Colace MP, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clement JC. 2013. The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant Soil 363:215–29.

    Article  CAS  Google Scholar 

  • Schimel JP, Hättenschwiler S. 2007. Nitrogen transfer between decomposing leaves of different N status. Soil Biol Biochem 39:1428–36.

    Article  CAS  Google Scholar 

  • Schmidt SK, Lipson DA. 2004. Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant Soil 259:1–7.

    Article  CAS  Google Scholar 

  • Seneviratne SI, Luthi D, Litschi M, Schar C. 2006. Land-atmosphere coupling and climate change in Europe. Nature 443:205–9.

    Article  CAS  PubMed  Google Scholar 

  • Sjögersten S, Wookey PA. 2004. Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant Soil 262:215–27.

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press.

  • Steinweg JM, Dukes JS, Wallensteine MD. 2012. Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92.

    Article  CAS  Google Scholar 

  • Teuling AJ, Seneviratne SI, Stockli R, Reichstein M, Moors E, Ciais P, Luyssaert S, van den Hurk B, Ammann C, Bernhofer C, Dellwik E, Gianelle D, Gielen B, Grunwald T, Klumpp K, Montagnani L, Moureaux C, Sottocornola M, Wohlfahrt G. 2010. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat Geosci 3:722–7.

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310.

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–33.

    Article  CAS  PubMed  Google Scholar 

  • Weber P, Pluess AR, Mühlethaler U. 2010. Resources of beech in Switzerland. In: Frýdl J, Novotný P, Fennessy J, von Wühlisch G, Eds. Genetic resources of beech in Europe. Results of COST E52, Vol. 25p 248–55. Special issue of Communicationes Instituti Forestalis Bohemicae

    Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ. 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62.

    Article  Google Scholar 

  • Wilkinson SC, Anderson JM, Scardelis SP, Tisiafouli M, Taylor A, Wolters V. 2002. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol Biochem 34:189–200.

    Article  CAS  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93.

    Article  Google Scholar 

  • Zhang SH, Chen DD, Sun DS, Wang XT, Smith JL, Du GZ. 2012. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau, China. Biol Fertil Soils 48:393–400.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the CCES (Competence Center Environment and Sustainability of the ETH Domain, Switzerland) as part of the Mountland project. Arboretum National d’Aubonne, Commune of St-George (VD), Parc Jurassien Vaudois, and Fondation Les Bois Chamblard provided logistics and infrastructure support. We are grateful to Laurent Grasset for introducing us to the PLFA technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Gavazov.

Additional information

Author contributions

KG, TS, and AB designed the study, KG and JL collected field data and performed laboratory analyses. KG analyzed data and wrote the manuscript with contributions from RM, TS, and AB.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavazov, K., Mills, R., Spiegelberger, T. et al. Biotic and Abiotic Constraints on the Decomposition of Fagus sylvatica Leaf Litter Along an Altitudinal Gradient in Contrasting Land-Use Types. Ecosystems 17, 1326–1337 (2014). https://doi.org/10.1007/s10021-014-9798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9798-9

Keywords

Navigation