Skip to main content
Log in

Highly sensitive electrochemical sensor for estradiol based on the signal amplification strategy of Cu-BDC frameworks

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Using 1,4-Benzenedicarboxylic acid (H2BDC) as the ligand, a kind of copper-based metal-organic frameworks (MOFs) were prepared and characterized using transmission electron microscopy, scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. After that, the prepared Cu-BDC frameworks were used to modify the carbon paste electrode, constructing a novel electrochemical sensor for estradiol (E2). The prepared Cu-BDC frameworks are much more active for the oxidation of E2, and greatly increase the oxidation signals of E2. The results from chronocoulometry indicate that the Cu-BDC frameworks modified electrode exhibit much higher accumulation efficiency toward E2. Based on the signal amplification strategy of Cu-BDC frameworks, a sensitive and rapid electrochemical method was developed for the determination of E2. The linear range was from 5.00 to 650.0 nM, and the detection limit was as low as 3.80 nM. It was used in different water samples, and the values of recovery were over the range from 96.5 to 101%. The practical applications reveal that this new sensing system is accurate and convenient, and has great potential applications in the environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tyler CR, Filby AL, Bickley LK, Cumming RI, Gibson R, Labadie P, Katsu Y, Liney KE, Shears JA, Silva-Castro V, Urushitani H, Lange A, Winter MJ, Iguchi T, Hill EM (2009) Environmental health impacts of equine estrogens derived from hormone replacement therapy. Environ Sci Technol 43:3897–3904

    Article  CAS  Google Scholar 

  2. Soto AM, Sonnenschein C (2010) Environmental causes of cancer: endocrine disruptors as carcinogens. Nat Rev Endocrinol 6:364–371

    Article  Google Scholar 

  3. Cesarino I, Hummelgen IA (2015) An additional tool towards overcoming absence of specificity of carbon nanostructure-based electrochemical sensors-application to estriol and estradiol detection and distinction. J Solid State Electrochem 19:3045–3050

    Article  CAS  Google Scholar 

  4. Perez C, Simoes FR, Codognoto L (2016) Voltammetric determination of 17 alpha-ethinylestradiol hormone in supply dam using BDD electrode. J Solid State Electrochem 20:2471–2478

    Article  CAS  Google Scholar 

  5. Novakova L, Solich P, Matysova L, Sicha J (2004) HPLC determination of estradiol, its degradation product, and preservatives in new topical formulation Estrogel HBF. Anal Bioanal Chem 379:781–787

    Article  CAS  Google Scholar 

  6. Tong P, Kasuga Y, Khoo CS (2006) Liquid chromatographic-mass spectrometric method for detection of estrogen in commercial oils and in fruit seed oils. J Food Compos Anal 19:150–156

    Article  CAS  Google Scholar 

  7. Medeiros NG, Ribas VC, Lavayen V, Da Silva JA (2016) Synthesis of flower-like Cuo hierarchical nanostructures as an electrochemical platform for glucose sensing. J Solid State Electrochem 20:2419–2426

    Article  CAS  Google Scholar 

  8. Yang YJ, Li WK, Chen XH (2012) Highly enhanced electrocatalytic oxidation of glucose on Cu(OH)2/CuO nanotube arrays modified copper electrode. J Solid State Electrochem 16:2877–2881

    Article  CAS  Google Scholar 

  9. Liang X, Zhang XY, Wang FW, Xu M, Bao X (2014) Simultaneous determination of guanine and adenine on CuO shuttle-like nanocrystals/poly(neutral red) film on glassy carbon electrode. J Solid State Electrochem 18:3453–3461

    Article  CAS  Google Scholar 

  10. Moraes FC, Rossi B, Donatoni MC, de Oliveira KT, Pereira EC (2015) Sensitive determination of 17 beta-estradiol in river water using a graphene based electrochemical sensor. Anal Chim Acta 881:37–43

    Article  CAS  Google Scholar 

  11. Yuan LH, Zhang J, Zhou P, Chen JX, Wang RY, Wen TT, Li Y, Zhou XM, Jiang HJ (2011) Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17 beta-estradiol. Biosens Bioelectron 29:29–33

    Article  CAS  Google Scholar 

  12. Janegitz BC, dos Santos FA, Faria RC, Zucolotto V (2014) Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Mater Sci Eng C-Mater Biol Appl 37:14–19

    Article  CAS  Google Scholar 

  13. He Q, Yuan S, Chen C, Hu SS (2003) Electrochemical properties of estradiol at glassy carbon electrode modified with nano-Al2O3 film. Mater Sci Eng C-Mater Biol Appl 23:621–625

    Article  Google Scholar 

  14. Song JC, Yang J, Hu XM (2008) Electrochemical determination of estradiol using a poly(L-serine) film-modified electrode. J Appl Electrochem 38:833–836

    Article  CAS  Google Scholar 

  15. Huang XC, Lin YY, Zhang JP, Chen XM (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Edit 45:1557–1559

    Article  CAS  Google Scholar 

  16. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Frey G, Morris RE, Serre C (2012) Metal-organic frameworks in biomedicine. Chem Rev 112:1232–1268

    Article  CAS  Google Scholar 

  17. Ji LD, Wang YY, Wu KB, Zhang WK (2016) Simultaneous determination of environmental estrogens: diethylstilbestrol and estradiol using Cu-BTC frameworks-sensitized electrode. Talanta 159:215–221

    Article  CAS  Google Scholar 

  18. Ji LD, Cheng Q, Wu KB, Yang XF (2016) Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of sunset yellow and tartrazine. Sensors Actuators B Chem 231:12–17

    Article  CAS  Google Scholar 

  19. Anbia M, Sheykhi S (2013) Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption. J Ind Eng Chem 19:1583–1586

    Article  CAS  Google Scholar 

  20. Domenech A, Garcia AH, Domenech-Carbo MT, Xamena FXLI (2006) Electrochemistry nanometric patterning of MOF particles: anisotropic metal electrodeposition in Cu/MOF. Electrochem Commun 8:1830–1834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding information

This work was Granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Pharmaceutical Sciences (YKFJ3-003), and the National Natural Science Foundation of China (No. 21445003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Deng, Q. & Long, J. Highly sensitive electrochemical sensor for estradiol based on the signal amplification strategy of Cu-BDC frameworks. J Solid State Electrochem 22, 487–493 (2018). https://doi.org/10.1007/s10008-017-3778-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3778-x

Keywords

Navigation