Skip to main content
Log in

A signal-off photoelectrochemical aptasensor for ultrasensitive 17β-estradiol detection based on rose-like CdS@C nanostructure and enzymatic amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon-coated cadmium sulfide rose-like nanostructures (CdS@C NRs) were prepared via a facile solvothermal approach and used as the photoelectrochemical (PEC) sensing platform for the integration of functional biomolecules. Based on this, a novel “signal-off” PEC aptasensor mediated by enzymatic amplification was proposed for the sensitive and selective detection of 17β-estradiol (E2). In the presence of E2, alkaline phosphatase-modified aptamer (ALP-apta) were released from the electrode surface through the specific recognition with E2, which caused the negative effect on PEC response due to the decrease of ascorbic acid (AA) produced by the ALP in situ enzymatic catalysis. The developed PEC aptasensor for detection of E2 exhibited a wide linear range of 1.0–250 nM, with the low detection limit of 0.37 nM. This work provides novel insight into the design of potential phoelectroactive materials and the application of signal amplification strategy in environmental analysis field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Adeel M, Song X, Wang Y, Francis D, Yang Y (2017) Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107–119. https://doi.org/10.1016/j.envint.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  2. Li Y, Liu L, Feng J, Ren X, Zhang Y, Yan T, Liu X, Wei Q (2020) A self-powered photoelectrochemical cathodic aptasensor for the detection of 17β-estradiol based on FeOOH/In2S3 photoanode. Biosens Bioelectron 154:112089. https://doi.org/10.1016/j.bios.2020.112089

    Article  CAS  PubMed  Google Scholar 

  3. Jan van Winden L, Kok M, Acda M, Dezentje V, Linn S, Shi R-Z, van Rossum HH (2021) Simultaneous analysis of E1 and E2 by LC-MS/MS in healthy volunteers: estimation of reference intervals and comparison with a conventional E2 immunoassay. J Chromatogr B 122563. https://doi.org/10.1016/j.jchromb.2021.122563

  4. Minopoli A, Sakač N, Lenyk B, Campanile R, Mayer D, Offenhäusser A, Velotta R, Della Ventura B (2020) LSPR-based colorimetric immunosensor for rapid and sensitive 17β-estradiol detection in tap water. Sens Actuators, B 308:127699. https://doi.org/10.1016/j.snb.2020.127699

    Article  CAS  Google Scholar 

  5. Chaisuwan N, Xu H, Wu G, Liu J (2013) A highly sensitive differential pulse anodic stripping voltammetry for determination of 17β-estradiol (E2) using CdSe quantum dots based on indirect competitive immunoassay. Biosens Bioelectron 46:150–154. https://doi.org/10.1016/j.bios.2013.02.041

    Article  CAS  PubMed  Google Scholar 

  6. Ming W, Wang X, Lu W, Zhang Z, Song X, Li J, Chen L (2017) Magnetic molecularly imprinted polymers for the fluorescent detection of trace 17β-estradiol in environmental water. Sens Actuators, B 238:1309–1315. https://doi.org/10.1016/j.snb.2016.09.111

    Article  CAS  Google Scholar 

  7. Singh AC, Asif M, Bacher G, Danielsson B, Willander M, Bhand S (2019) Nanoimmunosensor based on ZnO nanorods for ultrasensitive detection of 17β-Estradiol. Biosens Bioelectron 126:15–22. https://doi.org/10.1016/j.bios.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  8. Yao X, Gao J, Yan K, Chen Y, Zhang J (2020) Ratiometric self-powered sensor for 17β-estradiol detection based on a dual-channel photocatalytic fuel cell. Anal Chem 92(12):8026–8030. https://doi.org/10.1021/acs.analchem.0c01543

    Article  CAS  PubMed  Google Scholar 

  9. Zhao WW, Xu JJ, Chen HY (2017) Photoelectrochemical enzymatic biosensors. Biosens Bioelectron 92:294–304. https://doi.org/10.1016/j.bios.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Liu Q, Zhang M, You F, Hao N, Ding C, Wang K (2021) Simultaneous detection of enrofloxacin and ciprofloxacin in milk using a bias potentials controlling-based photoelectrochemical aptasensor. J Hazard Mater 416:125988. https://doi.org/10.1016/j.jhazmat.2021.125988

    Article  CAS  PubMed  Google Scholar 

  11. Cao J-T, Lv J-L, Liao X-J, Ma S-H, Liu Y-M (2021) Photogenerated hole-induced chemical–chemical redox cycling strategy on a direct Z-scheme Bi2S3/Bi2MoO6 heterostructure photoelectrode: toward an ultrasensitive photoelectrochemical immunoassay. Anal Chem. https://doi.org/10.1021/acs.analchem.1c02175

    Article  PubMed  Google Scholar 

  12. Li H, Han M, Weng X, Zhang Y, Li J (2021) DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano 15(1):1710–1717. https://doi.org/10.1021/acsnano.0c09374

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Q, Tang D (2020) Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC, Trends Anal Chem 124:115814. https://doi.org/10.1016/j.trac.2020.115814

    Article  CAS  Google Scholar 

  14. Yang H, Xu M, Li Z, Ge S, Zhang L, Zhu P, Yu J (2020) Dual-photocathode array propelled lab-on-paper ratiometric photoelectrochemical sensing platform for ultrasensitive microRNA bioassay. Sens Actuators, B 316. https://doi.org/10.1016/j.snb.2020.128093

  15. Yang H, Zhang M, Wang L, Yu R, Tu W, Wang Z, Wang R, Gao H, Dai Z (2021) Modulating polarization of perovskite-based heterostructures via in situ semiconductor generation and enzyme catalysis for signal-switchable photoelectrochemical biosensing. Anal Chem. https://doi.org/10.1021/acs.analchem.1c01457

    Article  PubMed  PubMed Central  Google Scholar 

  16. Long D, Li M, Wang H, Wang H, Chai Y, Li Z, Yuan R (2020) Ultrasensitive photoelectrochemical assay for DNA detection based on a novel SnS2/Co3O4 sensitized structure. Anal Chem 92(21):14769–14774. https://doi.org/10.1021/acs.analchem.0c03497

    Article  CAS  PubMed  Google Scholar 

  17. Li Z, Su C, Wu D, Zhang Z (2018) Gold nanoparticles decorated hematite photoelectrode for sensitive and selective photoelectrochemical aptasensing of lysozyme. Anal Chem 90(1):961–967. https://doi.org/10.1021/acs.analchem.7b04015

    Article  CAS  PubMed  Google Scholar 

  18. Han SC, Pu YC, Zheng LX, Hu LF, Zhang JZ, Fang XS (2016) Uniform carbon-coated CdS core-shell nanostructures: synthesis, ultrafast charge carrier dynamics, and photoelectrochemical water splitting. J Mater Chem A 4(3):1078–1086. https://doi.org/10.1039/C5TA09024E

    Article  CAS  Google Scholar 

  19. Hu Y, Gao X, Yu L, Wang Y, Ning J, Xu S, Lou XW (2013) Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew Chem Int Ed 52(21):5636–5639. https://doi.org/10.1002/anie.201301709

    Article  CAS  Google Scholar 

  20. Zou S, Fu Z, Xiang C, Wu W, Tang S, Liu Y, Yin D (2015) Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chin J Catal 36(7):1077–1085. https://doi.org/10.1016/S1872-2067(15)60827-0

    Article  CAS  Google Scholar 

  21. Tian J, Huang T, Lu J (2016) A photoelectrochemical aptasensor for mucin 1 based on DNA/aptamer linking of quantum dots and TiO2 nanotube arrays. Anal Methods 8(11):2375–2382. https://doi.org/10.1039/C5AY02290H

    Article  CAS  Google Scholar 

  22. Zhu JH, Feng YG, Wang AJ, Mei LP, Luo X, Feng JJ (2021) A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays. Biosens Bioelectron 181:113158. https://doi.org/10.1016/j.bios.2021.113158

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Zhu L, Zhou Y, Yin H, Ai S (2017) Enhanced photoelectrochemical method for sensitive detection of protein kinase A activity using TiO2/g-C3N4, PAMAM dendrimer, and alkaline phosphatase. Anal Chem 89(4):2369–2376. https://doi.org/10.1021/acs.analchem.6b04184

    Article  CAS  PubMed  Google Scholar 

  24. Tang S, Xia Y, Fan J, Cheng B, Yu J, Ho W (2021) Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts. Chin J Catal 42(5):743–752. https://doi.org/10.1016/S1872-2067(20)63695-6

    Article  CAS  Google Scholar 

  25. Sun J, Yin M, Li Y, Liang K, Fan Y, Li Z (2021) Efficient photocatalytic hydrogen production of ternary composite constituted by cubic CdS, MoS2 and activated carbon. J Alloys Compd 874:159930. https://doi.org/10.1016/j.jallcom.2021.159930

    Article  CAS  Google Scholar 

  26. Sun R-M, Zhang L, Feng J-J, Fang K-M, Wang A-J (2022) In situ produced Co9S8 nanoclusters/Co/Mn-S, N multi-doped 3D porous carbon derived from eriochrome black T as an effective bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. J Colloid Interface Sci 608:2100–2110. https://doi.org/10.1016/j.jcis.2021.10.144

    Article  CAS  PubMed  Google Scholar 

  27. Zhu J-H, Wang M, Tu L-H, Wang A-J, Luo X, Mei L-P, Zhao T, Feng J-J (2021) Nanosheets-assembled hollow CdIn2S4 microspheres-based photoelectrochemical and fluorescent dual-mode aptasensor for highly sensitive assay of 17β-estradiol based on magnetic separation and enzyme catalytic amplification. Sens Actuators, B 130553. https://doi.org/10.1016/j.snb.2021.130553

  28. Wu Y, Wang H, Tu W, Wu S, Liu Y, Tan YZ, Luo H, Yuan X, Chew JW (2018) Petal-like CdS nanostructures coated with exfoliated sulfur-doped carbon nitride via chemically activated chain termination for enhanced visible-light–driven photocatalytic water purification and H2 generation. Appl Catal, B 229:181–191. https://doi.org/10.1016/j.apcatb.2018.02.029

    Article  CAS  Google Scholar 

  29. Xing RZ, Li JX, Yang XG, Chen ZW, Huang R, Chen ZX, Zhou SG, Chen Z (2020) Preparation of high-performance CdS@C catalyst using Cd-enriched biochar recycled from plating wastewater. Front Chem 8:140. https://doi.org/10.3389/fchem.2020.00140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wong A, Santos AM, Fava EL, Fatibello Filho O, Sotomayor MDPT (2019) Voltammetric determination of 17β-estradiol in different matrices using a screen-printed sensor modified with CuPc, Printex 6L carbon and Nafion film. Microchem J 147:365–373. https://doi.org/10.1016/j.microc.2019.03.052

    Article  CAS  Google Scholar 

  31. Li Y, Zhao X, Li P, Huang Y, Wang J, Zhang J (2015) Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal Chim Acta 884:106–113. https://doi.org/10.1016/j.aca.2015.05.022

    Article  CAS  PubMed  Google Scholar 

  32. Han Q, Shen X, Zhu W, Zhu C, Zhou X, Jiang H (2016) Magnetic sensing film based on Fe3O4@Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol. Biosens Bioelectron 79:180–186. https://doi.org/10.1016/j.bios.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  33. Dong X, He L, Liu Y, Piao Y (2018) Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochim Acta 292:55–62. https://doi.org/10.1016/j.electacta.2018.09.129

    Article  CAS  Google Scholar 

  34. Wang W, Peng Y, Wu J, Zhang M, Li Q, Zhao Z, Liu M, Wang J, Cao G, Bai J, Gao Z (2021) Ultrasensitive detection of 17β-estradiol (E2) based on multistep isothermal amplification. Anal Chem 93(10):4488–4496. https://doi.org/10.1021/acs.analchem.0c04681

    Article  CAS  PubMed  Google Scholar 

  35. Lee M-H, Thomas JL, Su Z-L, Zhang Z-X, Lin C-Y, Huang Y-S, Yang C-H, Lin H-Y (2020) Doping of transition metal dichalcogenides in molecularly imprinted conductive polymers for the ultrasensitive determination of 17β-estradiol in eel serum. Biosens Bioelectron 150:111901. https://doi.org/10.1016/j.bios.2019.111901

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Natural Science Foundation of Zhejiang Province (LQ20B050001), Jinhua Science and Technology Bureau (No. 2020–4-187, 2021–3-058), and Zhejiang Public Welfare Technology Application Research Project (LGG19B050001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ping Mei, Yadong Xue or Pei Song.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 472 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, LH., Zhu, JH., Tanjung, Ap. et al. A signal-off photoelectrochemical aptasensor for ultrasensitive 17β-estradiol detection based on rose-like CdS@C nanostructure and enzymatic amplification. Microchim Acta 189, 56 (2022). https://doi.org/10.1007/s00604-022-05164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05164-1

Keywords

Navigation