Skip to main content
Log in

Pd-modified PEDOT layers obtained through electroless metal deposition—electrooxidation of glycerol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Pd-poly(3,4-ethylenedioxythiophene) (PEDOT)-based electrocatalytic materials are obtained by coupling Pd ion reduction with oxidation of pre-reduced PEDOT coatings. Electroless metal deposition is carried out in single or triple electroless deposition steps resulting in Pd NPs with mean size ranging between 12 and 22 nm, respectively. The proposed method of dispersing the Pd catalytic phase provides the opportunity to obtain high electrocatalytic currents with Pd loadings as low as 10 μg cm−2. The Pd-PEDOT catalyst obtained by triple-step metal deposition shows stable voltammetric behavior with respect to glycerol oxidation in alkaline solution. The established mass activity is between the highest values achieved at Pd-electrocatalysts without involving additional electrocatalytic materials or special supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Corti, Horacio R, Gonzalez, Ernesto R (eds) (2013) Direct alcohol fuel cells. Materials, performance, durability and applications. Springer

  2. Antolini E, Gonzalez ER (2009) Polymer supports for low-temperature fuel cells. Appl Catal A 365:1–19

    Article  CAS  Google Scholar 

  3. Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206

    Article  CAS  Google Scholar 

  4. Antolini E, Zignani SC, Santos SF, Gonzalez ER (2011) Palladium-based electrodes: a way to reduce platinum content in polymer-electrolyte membrane fuel cells. Electrochim Acta 56:2299–2305

    Article  CAS  Google Scholar 

  5. Yildiz G, Kadirgan F (1994) Electrocatalytic oxidation of glycerol. Behavior of palladium electrode in alkaline medium. J Electrochem Soc 141:725–730

    Article  CAS  Google Scholar 

  6. Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt-Ru anode electrocatalysts supported on multiwalled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190:241–251

    Article  CAS  Google Scholar 

  7. Simoes M, Baranton S, Coutanceau C (2010) Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl Catal B Environ 93:354–362

    Article  CAS  Google Scholar 

  8. Habibi E, Razmi H (2012) Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline medium. Int J Hydrog Energy 37:16800–16809

    Article  CAS  Google Scholar 

  9. Wang L, Bevilicqua M, Chen YX, Filippi J, Innocenti M, Lavacchi A, Marchionni A, Miller H (2013) Enhanced electrooxidation of alcohols at electrochemically treated polycrystalline palladium surface. J Power Sources 242:872–876

    Article  CAS  Google Scholar 

  10. Zhang Z, Xin L, Qi J, Chadderdon DJ, Li W (2013) Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels. Appl Catal B 136–137:29–39

    Google Scholar 

  11. Machado BF, Marchionni A, Basca RR, Bellini M, Beausoleil J, Oberhauser W, Vizza F, Serp P (2013) Synergistic effect between few layer grapheme and carbon nanotubes supports for palladium catalyzing electrochemical oxidation of alcohols. J Energy Chem 22:296–304

    Article  CAS  Google Scholar 

  12. Zhang X, Shen PK (2013) Glycerol oxidation on highly active Pd supported carbide/C aerogel composite catalysts. Int J Hydrogen Energy 38:2257–2262

    Article  CAS  Google Scholar 

  13. Rezaei B, Havakeshian E, Ensafi AA (2014) Fabrication of porous Pd film on nanoporous stainless steel using galvanic replacement as a novel electrocatalyst/electrode design for glycerol oxidation. Electrochim Acta 136:89–96

    Article  CAS  Google Scholar 

  14. Renard D, McCain C, Baidoun B, Bondy A, Bandyopadhay K (2014) Electrocatalytic properties of in-situ generated assemblies towards oxidation of multi-carbon alcohols and polyalcohols. Colloids Surf A 463:44–54

    Article  CAS  Google Scholar 

  15. Sadiki A, Vo P, Hu S, Copenhaver TS, Scudiero L, Ha S, Haan JL (2014) Increased electrochemical oxidation rate of alcohols in alkaline media on palladium surfaces electrochemically modified by antimony, lead and tin. Electrochim Acta 139:302–307

    Article  CAS  Google Scholar 

  16. Fashedemi OO, Ozoemena KI (2014) Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts. Electrochim Acta 128:279–286

    Article  CAS  Google Scholar 

  17. Li SS, Hu YY, Feng JJ, Lv ZY, Chen JR, Wang AJ (2014) Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. Int J Hydrog Energy 39:3730–3738

    Article  CAS  Google Scholar 

  18. Wang L, Lavacchi A, Bellini M, D’Acapito F, Benedetto FD, Innocenti M, Miller HA, Montegrossi G, Zafferoni C, Vizza F (2015) Deactivation of palladium electrocatalysts for alcohols oxidation in basic electrolytes. Electrochim Acta 177:100–106

    Article  CAS  Google Scholar 

  19. Hatchett DW, Millick NM, Kinyanjui JM, Pookpanratana S, Baer M, Hofmann T, Luinetti A, Heske C (2011) The electrochemical reduction of PdCl4 2− and PdCl6 2− in polyaniline: influence of Pd deposit morphology on methanol oxidation in alkaline solution. Electrochim Acta 56:6060–6070

    Article  CAS  Google Scholar 

  20. Zhao ZL, Tian J, Nie S, Ning Z (2011) Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline. Electrochim Acta 56:1967–1972

    Article  CAS  Google Scholar 

  21. Ghosh S, Teilout AL, Floresyona D, de Oliveira P, Hagege A, Remita H (2015) Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation. Int J Hydrog Energy 40:4951–4959

    Article  CAS  Google Scholar 

  22. Ilieva M, Tsakova V (2015) Temperature-treated polyaniline layers as support for Pd catalysts: electrooxidation of glycerol in alkaline medium. J Solid State Electrochem 19:2811–2818

    Article  CAS  Google Scholar 

  23. Pandey RK, Lakshminarayanan V (2010) Enhanced electrocatalytic activity of Pd-dispersed 3,4-polyethylenedioxythiophene film in hydrogen evolution and ethanol electro-oxidation reactions. J Phys Chem C 114:8507–8514

    Article  CAS  Google Scholar 

  24. Jiang F, Yao Z, Yue R, Xu J, Du Y, Yang P, Wang C (2013) Electrocatalytic activity of Pd nanoparticles supported on poly(3,4-ethylenedioxy-thiophene)-graphene hybrid for ethanol electrooxidation. J Solid State Electrochem 17:1039–1047

    Article  CAS  Google Scholar 

  25. Dash S, Munichandraiah N (2012) Electrocatalytic oxidation of 1,2-propanediol on electrodeposited Pd–poly(3,4-ethylenedioxythiophene) nanodendrite films in alkaline medium. Electrochim Acta 80:68–76

    Article  CAS  Google Scholar 

  26. Dash S, Munichandraiah N (2013) Electrocatalytic oxidation of C3-aliphatic alcohols on electrodeposited Pd-PEDOT nanodendrites in alkaline medium. J Electrochem Soc 160:H197–H202

    Article  CAS  Google Scholar 

  27. Dash S, Munichandraiah N (2015) Nanoflowers of PdRu on PEDOT for electrooxidation of glycerol and its analysis. Electrochim Acta. doi:10.1016/j.electacta.2015.07.020

    Google Scholar 

  28. Yue R, Wang H, Bin D, Xu J, Du Y, Lu W, Guod J (2015) Facile one-pot synthesis of Pd-PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation. J Mater Chem A 3:1077–1088

    Article  CAS  Google Scholar 

  29. Tsakova V (2010) Metal-based composites of conducting polymers. In: Eftekhari A (ed) Nanostructured conductive polymers. John Wiley & Sons, ISBN 978-0-470-74585-4, p. 289–340.

  30. Kondratiev VV, Malev VV, Eliseeva SN (2016) Composite electrode materials based on conducting polymers loaded with metal nanostructures. Russ Chem Rev 85:14–37

    Article  Google Scholar 

  31. Mourato A, Viana AS, Correia JP, Siegenthaler H, Abrantes LM (2004) Polyaniline films containing electrolessly precipitated palladium. Electrochim Acta 49:2249–2257

    Article  CAS  Google Scholar 

  32. Lyutov V, Tsakova V (2011) Palladium-modified polysulfonic acid-doped polyaniline layers for hydrazine oxidation in neutral solutions. J Electroanal Chem 661:186–191

    Article  CAS  Google Scholar 

  33. Moghaddam RB, Pickup PG (2011) Formic acid oxidation at spontaneously deposited palladium on polyaniline modified carbon paper. Electrochim Acta 56:7666–7672

    Article  CAS  Google Scholar 

  34. Ilieva M, Tsakova V, Erfurth W (2006) Electrochemical formation of bi-metal (copper-palladium) electrocatalyst supported on poly-3,4-ethyelenedioxythiophene. Electrochim Acta 52:816–824

    Article  CAS  Google Scholar 

  35. Eliseeva SN, Malev VV, Kondratiev VV (2009) Electrochemical properties of composite films based on poly-3,4-ethylenedioxythiophene with inclusions of metallic palladium. Russ J Electrochem 45:1045–1051

    Article  CAS  Google Scholar 

  36. Eliseeva SN, Ubyivovk EV, Bondarenko AS, Vyvenko OF, Kondratiev VV (2010) Synthesis and structure of poly-3,4-ethylenedioxythiophene film with the inclusions of palladium nanoparticles. Russ J Gen Chem 80:1143–1148

    Article  CAS  Google Scholar 

  37. Kondratiev VV, Babkova TA, Eliseeva SN (2012) Structure and electrochemical properties of composite films based on poly-3,4-ethylenedioxythiophene with metallic palladium inclusions. Russ J Electrochem 48:205–211

    Article  CAS  Google Scholar 

  38. Kondratiev VV, Babkova TA, Tolstopjatova EG (2013) PEDOT-supported Pd nanoparticles as a catalyst for hydrazine oxidation. J Solid State Electrochem 17:1621–1630

    Article  CAS  Google Scholar 

  39. Quispe CAG, Coronado CJR, Carvalho JA Jr (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sust Energy Rev 27:475–493

    Article  CAS  Google Scholar 

  40. Grden M, Lukazsewski M, Jerkiewicz G, Czerwinski A (2008) Electrochemical behavior of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta 53:7583–7598

    Article  CAS  Google Scholar 

  41. Macfie G, Cooper A, Cardosi MF (2011) Room temperature formation, electro-reduction and dissolution of surface oxide layers on sputtered palladium films. Electrochim Acta 56:8394–8402

    Article  CAS  Google Scholar 

  42. Morvant MC, Reynolds JR (1998) In situ conductivity study of poly(3,4-ethylenedioxythiophene). Synth Met 92:57–61

    Article  CAS  Google Scholar 

  43. Lapkowski M, Pron A (2000) Electrochemical oxidation of poly(3,4-ethylenedioxythiophene)—in situ conductivity and spectroscopic investigations. Synth Met 110:79–83

    Article  CAS  Google Scholar 

  44. Genesca J, Duran R (1987) The effect of Cl on the kinetics of the anodic dissolution of Pd in H2SO4 solutions. Electrochim Acta 32:541–544

    Article  CAS  Google Scholar 

  45. Atgelt KH, Boduszynski MM (1994) Composition and analysis of heavy petroleum fractions. Marcel Dekker, New York, p 214, Chapter 6

    Google Scholar 

  46. Diculescu VC, Chiorcea-Paquim AM, Corduneanu O, Oliveira-Brett AM (2007) Palladium nanoparticles and nanowires deposited electrochemically: AFM and electrochemical characterization. J Solid State Electrochem 11:887–898

    Article  CAS  Google Scholar 

  47. Bothwell ME, Cali GJ, Berry GM, Soriaga MP (1991) In situ regeneration of clean and ordered Pd (111) electrode surfaces by oxidative chemisorption and reductive desorption of iodine. Surf Sci Lett 249:322–326

    Article  Google Scholar 

  48. Zanfrognini B, Colina A, Heras A, Zanardi C, Seeber R, Lopes-Palacios J (2011) A UV-Visible/Raman spectroelectrochemical study of the stability of poly(3,4-ethylendioxythiophene) films. Polym Degrad Stab 56:2112–2119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ilieva.

Additional information

Dedication

This paper is dedicated to Professor György Inzelt on the occasion of his 70th birthday with the appreciation of his long-lasting involvement and strong impact on the development of modern electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilieva, M., Nakova, A. & Tsakova, V. Pd-modified PEDOT layers obtained through electroless metal deposition—electrooxidation of glycerol. J Solid State Electrochem 20, 3015–3023 (2016). https://doi.org/10.1007/s10008-016-3266-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3266-8

Keywords

Navigation