Skip to main content
Log in

Temperature-treated polyaniline layers as support for Pd catalysts: electrooxidation of glycerol in alkaline medium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new approach for obtaining highly dispersed Pd- and Pd/TiO2- electrocatalyst materials is proposed based on the use of polyaniline (PANI) as a sacrificial layer. PANI- or TiO2/PANI-coated electrodes are obtained by electrochemical polymerization of aniline in the absence or presence of TiO2 nanoparticles. Electroless palladium deposition at the expense of PANI oxidation is used to disperse the metal phase. Temperature treatment at 400 °C is further used to decompose the polymer backbone and obtain a highly dispersed catalysts deprived from the intrinsic electroactivity of PANI. The temperature-treated Pd/PANI and Pd/TiO2/PANI composites are studied as catalysts for the electrooxidation of glycerol in alkaline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450

    Article  CAS  Google Scholar 

  2. Lavacchi A, Miller H, Vizza F (2013) Nanotechnology in electrocatalysis for energy. Springer, New York, 331 p. ISBN 978-1-4899-8059-5

    Book  Google Scholar 

  3. Braunchweig B, Hibbitts D, Neurock M, Wieckowski A (2013) Electrocatalysis: a direct alcohol fuel cell and surface science perspective. Catal Today 202:197–209

    Article  CAS  Google Scholar 

  4. Quispe CAG, Coronado CJR, Carvalho JA Jr (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sust Energ Rev 27:475–493

    Article  CAS  Google Scholar 

  5. Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206

    Article  CAS  Google Scholar 

  6. Wang Z, Hu F, Shen PK (2006) Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation. Electrochem Commun 8:1764–1768

    Article  CAS  Google Scholar 

  7. Bambagioni V, Biamchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol, ethanol, glycerol). J Power Sources 190:241–251

    Article  CAS  Google Scholar 

  8. Simoes M, Baranton S, Contanceau C (2010) Electrooxidation of glycerol at Pd-based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl Catal B Environ 93:354–362

    Article  CAS  Google Scholar 

  9. Habibi E, Razmi H (2012) Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media. Int J Hydrogen Energy 37:16800–16809

    Article  CAS  Google Scholar 

  10. Machado BF, Marchionni A, Bacsa RR, Bellini M, Beausoleil J, Oberhauser W, Vizza F, Serp P (2013) Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols. J Energy Chem 22:296–304

    Article  CAS  Google Scholar 

  11. Dector A, Cuevas-Mun FM, Guerra-Balcazar M, Godinez LA, Ledesma-Garcıa J, Arriaga LG (2013) Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes. Int J Hydrogen Energy 38:12617–12622

    Article  CAS  Google Scholar 

  12. Li SS, Hu YY, Feng JJ, Lv ZY, Chen JR, Wang AJ (2014) Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. Int J Hydrogen Energy 39:3730–3738

    Article  CAS  Google Scholar 

  13. Rezaei B, Havakeshian E, Ensafi AA (2014) Fabrication of porous Pd film on nanoporous stainless steel using galvanic replacement as a novel electrocatalyst/electrode design for glycerol oxidation. Electrochim Acta 136:89–96

    Article  CAS  Google Scholar 

  14. Maya-Cornejo J, Arjona N, Guerra-Balcázar M, Álvarez-Contreras L, Ledesma-García J, Arriaga LG (2014) Synthesis of Pd-Cu bimetallic electrocatalyst for ethylene glycol and glycerol oxidations in alkaline media. Proc Chem 12:19–26

    Article  CAS  Google Scholar 

  15. Fashedemi OO, Ozoemena KI (2014) Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalyst. Electrochim Acta 128:279–286

    Article  CAS  Google Scholar 

  16. Sadiki TA, Vo P, Hu S, Copenhaver TS, Scudiero L, Ha S, Haan JL (2014) Increased electrochemical oxidation rate of alcohols in alkaline media on palladium surfaces electrochemically modified by antimony, lead, and tin. Electrochim Acta 13:302–307

    Article  Google Scholar 

  17. Xu C, Tian Z, Shen P, Jiang SP (2008) Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrcatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53:2610–2618

    Article  CAS  Google Scholar 

  18. Hu F, Ding F, Song S, Shen P (2006) Pd electrocatalyst supported on carbonized TiO2 nanotubes for ethanol oxidation. J Power Sources 163:415–419

    Article  CAS  Google Scholar 

  19. Su L, Jia W, Schempf A, Lei Y (2009) Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium. Electrochem Commun 11:2199–2202

    Article  CAS  Google Scholar 

  20. Xu W, Zhu S, Li Z, Cui Z, Yang X (2013) Synthesis and catalytic properties of Pd nanoparticles loaded nanoporous TiO2 material. Electrochim Acta 114:35–41

    Article  CAS  Google Scholar 

  21. Estudillo-Wong LA, Vargas-Gomez AM, Arce-Estrada EM, Manzo-Robledo A (2013) TiO2/C composite as a support for Pd-nanoparticles toward the electrocatalytic oxidation of methanol in alkaline media. Electrochim Acta 112:164–170

    Article  CAS  Google Scholar 

  22. Liang R, Hu A, Persic J, Zhou N (2013) Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano Micro Lett 5:202–212

    Article  CAS  Google Scholar 

  23. Maheswari S, Sridhar P, Pitchumani S (2013) Pd-TiO2/C as a methanol tolerant catalysts for oxygen reduction reaction in alkaline medium. Electrochem Commun 26:97–100

    Article  CAS  Google Scholar 

  24. Venancio EC, Napporn WT, Motheo AJ (2002) Electro-oxidation of glycerol on platinum dispersed in polyaniline matrices. Electrochim Acta 47:1495–1501

    Article  CAS  Google Scholar 

  25. Tsakova V (2008) How to affect number, size, and location of metal particles deposited in conducting polymer layers. J Solid State Electrochem 12:1421–1434

    Article  CAS  Google Scholar 

  26. Antolini E, Gonzalez ER (2009) Polymer supports for low-temperature fuel cell catalysts. Appl Catal A 365:1–19

    Article  CAS  Google Scholar 

  27. Tsakova V (2010) Metal-based composite of conducting polymers. In: Eftekhari A (ed) Nanostructured conductive polymers, Wiley. ISBN 978-0-470-74585 289-340

  28. Hatchett DW, Millick NM, Kinyanjui JM, Pookpanratana S, Bar M, Hofmann T, Heske C (2011) The electrochemical reduction of PdCl4 2− and PdCl6 2− in polyaniline: influence of Pd deposit morphology on methanol oxidation in alkaline solution. Electrochim Acta 56:6060–6070

    Article  CAS  Google Scholar 

  29. Lyutov V, Tsakova V (2011) Palladium-modified polysulfonic acid-doped polyaniline layers for hydrazine oxidation in neutral solutions. J Electroanal Chem 661:186–191

    Article  CAS  Google Scholar 

  30. Ciric-Marjanovic G (2013) Recent advances in polyaniline composites with metals, metaloids and nonmetals. Synth Met 170:31–56

    Article  CAS  Google Scholar 

  31. Pandey RK, Lakshminarayanan V (2012) Ethanol electrocatalysis on gold and conducting polymer nanocomposites: a study of the kinetic parameters. Appl Catal B Environ 125:271–281

    Article  CAS  Google Scholar 

  32. Dash S, Munichandraiah N (2012) Electrocatalytic oxidation of 1,2-propanediol on electrodeposited Pd–poly(3,4-ethylenedioxythiophene) nanodendrite films in alkaline medium. Electrochim Acta 80:68–76

    Article  CAS  Google Scholar 

  33. Lina H, Yang J, Liu J, Huang Y, Xiao J, Zhang X (2013) Properties of Pd nanoparticles-embedded polyaniline multilayer film and its electrocatalytic activity for hydrazine oxidation. Electrochim Acta 90:382–392

    Article  Google Scholar 

  34. Jiang F, Yao Z, Yue R, Xu J, Du Y, Yang P, Wang C (2013) Electrocatalytic activity of Pd nanoparticles supported on poly(3,4-ethylenedioxythiophene)-graphene hybrid for ethanol electrooxidation. J Solid State Electrochem 17:1039–1047

    Article  CAS  Google Scholar 

  35. Yan R, Jin B (2014) Preparation and electrochemical performance of polyaniline/Pt microelectrodes. Electrochim Acta 115:449–453

    Article  CAS  Google Scholar 

  36. Ilieva M, Ivanov S, Tsakova V (2008) Electrochemical synthesis and characterization of TiO2-polyaniline composite layers. J Appl Electrochem 38:63–69

    Article  CAS  Google Scholar 

  37. Ilieva M, Tsakova V (2012) TiO2/WO3 hybrid structures produced through a sacrificial polymer layer technique for photo- and photoelectrooxidation under ultraviolet and visible light illumination. J Appl Electrochem 42:121–129

    Article  CAS  Google Scholar 

  38. Trchova M, Matejka P, Brodinova J, Kalnedova A, Prokes J, Stejskal J (2006) Structural and conductivity changes during the pyrolysis of polyaniline base. Polym Degrad Stab 91:114–121

    Article  CAS  Google Scholar 

  39. Perreira de Silva JE, de Faria DLA, Cordoba de Torresi SI, Temperini MLA (2000) Influence of thermal treatment on doped polyaniline studied by resonance Raman spectroscopy. Macromolecules 33:3077–3083

    Article  Google Scholar 

  40. Bhandra S, Khastgir D (2008) Extrinsic and intrinsic structural change during heat treatment of polyaniline. Polym Degrad Stab 93:1094–1099

    Article  Google Scholar 

  41. Nand AN, Ray S, Gizdavic- Nikolaidis M, Travas-Sejdic J, Kilmartin PA (2011) The effects of thermal treatment on the antioxidant activity of polyaniline. Polym Degrad Stab 96:2159–2166

    Article  CAS  Google Scholar 

  42. Nishara Begum A, Dhachanamoorthi N, Raja Saravanan ME, Jayamurugan P, Manoharan D, Ponnuswamy V (2013) Influence of annealing effects on polyaniline for good microstructural modification. Optik 124:238–242

    Article  Google Scholar 

  43. Ivanov S, Tsakova V (2005) Electroless versus electrodriven deposition of silver crystals in polyaniline: role of silver anion complexes. Electrochim Acta 50:5616–5623

    Article  CAS  Google Scholar 

  44. Serov A, Martinez U, Atanassov P (2013) Novel Pd-In catalysts for alcohol electrooxidation in alkaline media. Electrochem Commun 34:185–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The cooperation of the laboratory for electron microscopy at Institute of Physical Chemistry, Sofia is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ilieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilieva, M., Tsakova, V. Temperature-treated polyaniline layers as support for Pd catalysts: electrooxidation of glycerol in alkaline medium. J Solid State Electrochem 19, 2811–2818 (2015). https://doi.org/10.1007/s10008-015-2880-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2880-1

Keywords

Navigation