Skip to main content
Log in

Palladium nanoparticles and nanowires deposited electrochemically: AFM and electrochemical characterization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Palladium nanoparticles and nanowires electrochemically deposited onto a carbon surface were studied using cyclic voltammetry, impedance spectroscopy and atomic force microscopy. The ex situ and in situ atomic force microscopy (AFM) topographic images showed that nanoparticles and nanowires of palladium were preferentially electrodeposited to surface defects on the highly oriented pyrolytic graphite surface and enabled the determination of the Pd nanostructure dimensions on the order of 50–150 nm. The palladium nanoparticles and nanowires electrochemically deposited onto a glassy carbon surface behave differently with respect to the pH of the electrolyte buffer solution. In acid or mild acid solutions under applied negative potential, hydrogen can be adsorbed/absorbed onto/into the palladium lattice. By controlling the applied negative potential, different quantities of hydrogen can be incorporated, and this process was followed, analysing the oxidation peak of hydrogen. It is also shown that the growth of the Pd oxide layer begins at negative potentials with the formation of a pre-monolayer oxide film, at a potential well before the hydrogen evolution region. At positive potentials, Pd(0) nanoparticles undergo oxidation, and the formation of a mixed oxide layer was observed, which can act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Depending on thickness and composition, this oxide layer can be reversibly reduced. AFM images confirmed that the PdO and PdO2 oxides formed on the surface may act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harrison BS, Atala A (2007) Biomaterials 28:344

    CAS  Google Scholar 

  2. He X, Wu F, Zheng M (2006) DOI 10.1016/j.diamond.2006.06.011

  3. Kohli P, Wirtz M, Martin CR (2004) Electroanalysis 16:9

    Article  CAS  Google Scholar 

  4. Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601

    Article  CAS  Google Scholar 

  5. Katz E, Willner I, Wang J (2004) Electroanalysis 16:19

    Article  CAS  Google Scholar 

  6. Simm AO, Ward-Jones S, Banks CE, Compton RG (2005) Anal Sci 21:667

    Article  CAS  Google Scholar 

  7. Raj CR, Okajima T, Ohsaka T (2003) J Electroanal Chem 543:127

    Article  CAS  Google Scholar 

  8. Liu H, Favier F, Ng K, Zach MP, Penner RM (2001) Electrochim Acta 47:671

    Article  CAS  Google Scholar 

  9. Penner RM (2002) J Phys Chem B 106:3339

    Article  CAS  Google Scholar 

  10. Walter EC, Murray BJ, Favier F, Kaltenpoth G, Grunze, M, Penner RM (2002) J Phys Chem B 106:11407

    Article  CAS  Google Scholar 

  11. Kawde A-N, Wang J (2004) Electroanalysis 16:101

    Article  Google Scholar 

  12. Willner B, Katz E, Willner I (2006) Curr Opin Biotech DOI 10.1016/j.copbio.2006.10.008

  13. Martínez-Sánchez R, Reyes-Gasga J, Caudillo R, García-Gutierrez DI, Márquez-Lucero A, Estrada-Guel I, Mendoza-Ruiz DC, José Yacaman M (2006) J Alloy Compd DOI 10.1016/j.jallcom.2006.08.051

  14. Dávila-Martínez RE, Cueto LF, Sánchez EM (2006) Surf Sci 600:3427

    Article  Google Scholar 

  15. Ng KH, Liu H, Penner RM (2000) Langmuir 16:4016

    Article  CAS  Google Scholar 

  16. Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenkovic V, Ross PN, Markovic NM (2005) Electrochim Acta 50:5144

    Article  CAS  Google Scholar 

  17. Zoval JV, Lee J, Gorer S, Penner RM (1998) J Phys Chem B 102:1166

    Article  CAS  Google Scholar 

  18. You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S (2003) Anal Chem 75:5191

    Article  CAS  Google Scholar 

  19. Xu C, Wu G, Liu Z, Wu D, Meek TT, Han Q (2004) Mater Res Bull 39:1499

    Article  CAS  Google Scholar 

  20. Male KB, Hrapovic S, Liu Y, Wang D, Luong JHT (2004) Anal Chim Acta 516:35

    Article  CAS  Google Scholar 

  21. Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Adv Colloid Interface Sci 120:47

    Article  CAS  Google Scholar 

  22. Charles E, Sykes H, Fernandez-Torres LC, Nanayakkara SU, Mantooth BA, Nevin RM, Weiss PS (2005) Proc Natl Acad Sci USA 102:17907

    Article  Google Scholar 

  23. Burke LD, Casey JK (1993) J Electrochem Soc 140:1284

    Article  CAS  Google Scholar 

  24. Burke LD, Casey JK (1993) J Electrochem Soc 140:1292

    Article  CAS  Google Scholar 

  25. Burke LD, Casey JK (1993) J Appl Electrochem 23:573

    Article  CAS  Google Scholar 

  26. Bolzán AE (1995) J Electroanal Chem 380:127

    Article  Google Scholar 

  27. Chierchie T, Mayer C, Lorentz WJ (1982) J Electroanal Chem 135:211

    Article  CAS  Google Scholar 

  28. Gossner K, Mizera E (1981) J Electroanal Chem 125:347

    CAS  Google Scholar 

  29. Baldauf M, Kolb DM (1993) Electrochim Acta 38:2145

    Article  CAS  Google Scholar 

  30. Naohara H, Ye S, Uosaki K (1998) J Phys Chem B 102:4366

    Article  CAS  Google Scholar 

  31. Lubert K-H, Guttman M, Beyer L (1999) J Electroanal Chem 462:174

    Article  CAS  Google Scholar 

  32. Lubert K-H, Guttman M, Beyer L, Kalcher K (2001) Electrochem Commun 3:102

    Article  CAS  Google Scholar 

  33. Li F, Zhang B, Dong S, Wang E (1997) Electrochim Acta 42:2563

    Article  CAS  Google Scholar 

  34. Pattabiraman R (1997) Appl Catal A Gen 153:9

    Article  CAS  Google Scholar 

  35. Batchelor-McAuley C, Banks CE, Simm AO, Jones TGJ, Compton RG (2006) Chem Phys Chem 7:1081

    CAS  Google Scholar 

  36. Fournée V, Barrow JA, Shimoda M, Ross AR, Lograsso TA, Thiel PA, Tsao AP (2003) Surf Sci 541:147

    Article  Google Scholar 

  37. Ji X, Banks CE, Xi W, Wilkins SJ, Compton RG (2006) J Phys Chem B 110:22306

    Article  CAS  Google Scholar 

  38. Atshabar MZ, Banerji D, Singamaneni S, Bliznuyuk V (2004) Nanotechnology 15:374

    Article  Google Scholar 

  39. Handbook of chemistry and physics http://www.hbcpnetbase.com/

  40. Czrewinski A, Marassi R, Zamponi S (1991) J Electroanal Chem 316:211

    Article  Google Scholar 

  41. Burke LD, Nagle LC (1999) J Electroanal Chem 461:52

    Article  CAS  Google Scholar 

  42. Burke LD, Casey JK (1992) Electrochim Acta 37:1817

    Article  CAS  Google Scholar 

  43. Markovic NM, Sarrat ST, Gasteiger HA, Ross PN (1996) J Chem Soc Faraday Trans 92:3719

    Article  CAS  Google Scholar 

  44. Tani T (1989) Phys Today 36:36

    Google Scholar 

  45. Bagotzky VS, Tarasevich MR (1979) J Electroanal Chem 101:1

    Article  Google Scholar 

  46. Kim KS, Gossmann AF, Winograd N (1974) Anal Chem 46:197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Fundação para a Ciência e Tecnologia (FCT), Post-Doctoral Grants SFRH/BPD/18824/2004 (V.C. Diculescu), SFRH/BPD/27087/2006 (A.M. Chiorcea-Paquim), Ph.D. Grant SFRH/BD/18914/2004 (O. Corduneanu), POCI 2010 (co-financed by the European Community Fund FEDER), ICEMS (Research Unit 103), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Oliveira-Brett.

Additional information

Dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diculescu, V.C., Chiorcea-Paquim, AM., Corduneanu, O. et al. Palladium nanoparticles and nanowires deposited electrochemically: AFM and electrochemical characterization. J Solid State Electrochem 11, 887–898 (2007). https://doi.org/10.1007/s10008-007-0275-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0275-7

Keywords

Navigation