Skip to main content
Log in

Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-supported metallophthalocyanine catalysts, composed of a transition central metal M (M = Co, Mn, Ni, Fe) in the phthalocyanine ring, were synthesized in this work. As cathodic reaction in a fuel cell, the oxygen reduction reaction (ORR) was investigated in alkaline medium with linear scanning voltammetry at the surface of these electrocatalysts deposited onto a rotating disk electrode (RDE). It was found that the number of electrons transferred depended on the nature of the metallic cation in the catalyst. Evidences provided with Koutecky-Levich approach showed that iron phthalocyanine (FePc) exhibited the better electrocatalytic ability toward the ORR with four electrons exchanged and low activation overpotential. Among these different as-prepared materials, MnPc and FePc led to a four-electron pathway, while CoPc and NiPc proceeded by a two-electron route. The latter reaction process was also determined with a rotating ring-disk electrode (RRDE), which allowed the determination of hydrogen peroxide formed as O2 reduction intermediate in a small amount, i.e., less than 1.2 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zagal JH, Javier Recio F, Gutierrez CA, Zuñiga C, Páez MA, Caro CA (2014) Towards a unified way of comparing the electrocatalytic activity MN4 macrocyclic metal catalysts for O2 reduction on the basis of the reversible potential of the reaction. Electrochem Commun 41:24–26

    Article  CAS  Google Scholar 

  2. Ramaswamy N, Mukerjee S (2012) Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and Non-Pt surfaces: acid versus alkaline media. Adv Phys Chem 2012:17

    Article  Google Scholar 

  3. Zagal JH, Páez M, Sturm J, Ureta-Zañartu S (1984) Electroreduction of oxygen on mixtures of phthalocyanines co-adsorbed on a graphite electrode. J Electroanal Chem 181:295–300

    Article  CAS  Google Scholar 

  4. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, et al (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    Article  CAS  Google Scholar 

  5. Wanjala BN, Fang B, Loukrakpam R, Chen Y, Engelhard M, Luo J, Yin J, Yang L, Shan S, Zhong C-J (2012) Role of metal coordination structures in enhancement of electrocatalytic activity of ternary nanoalloys for oxygen reduction reaction. ACS Catal 2:795–806

    Article  CAS  Google Scholar 

  6. Wang C, Markovic NM, Stamenkovic VR (2012) Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal 2:891–898

    Article  CAS  Google Scholar 

  7. Jukk K, Alexeyeva N, Sarapuu A, Ritslaid P, Kozlova J, Sammelselg V, Tammeveski K (2013) Electroreduction of oxygen on sputter-deposited Pd nanolayers on multi-walled carbon nanotubes. Int J Hydrog Energy 38:3614–3620

    Article  CAS  Google Scholar 

  8. Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu JM (2012) Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 59:329–335

    Article  CAS  Google Scholar 

  9. Kruusenberg I, Matisen L, Tammeveski K (2013) Oxygen electroreduction on multi-walled carbon nanotube supported metallophthalocyanines and porphyrins in alkaline media. J Nanosci Nanotechnol 13:621–627

    Article  CAS  Google Scholar 

  10. Kruusenberg I, Matisen L, Shah Q, Kannan AM, Tammeveski K (2012) Non-platinum cathode catalysts for alkaline membrane fuel cells. Int J Hydrog Energy 37:4406–4412

    Article  CAS  Google Scholar 

  11. Zhu C, Dong S (2013) Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5:1753–1767

    Article  CAS  Google Scholar 

  12. Wu G, Zelenay P (2013) Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res 46:1878–1889

    Article  CAS  Google Scholar 

  13. Harnisch F, Wirth S, Schröder U (2009) Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. Iron(II) phthalocyanine based electrodes. Electrochem Commun 11:2253–2256

    Article  CAS  Google Scholar 

  14. Jasinski R (1965) Cobalt phthalocyanine as a fuel cell cathode. J Electrochem Soc 112:526–528

    Article  CAS  Google Scholar 

  15. Zhang L, Zhang J, Wilkinson DP, Wang H (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 156:171–182

    Article  CAS  Google Scholar 

  16. Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192

    Article  CAS  Google Scholar 

  17. Jiang L, Cui L, He X (2015) Cobalt-porphyrin noncovalently functionalized graphene as nonprecious-metal electrocatalyst for oxygen reduction reaction in an alkaline medium. J Solid State Electrochem 19:497–506

    Article  CAS  Google Scholar 

  18. Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15

    Article  CAS  Google Scholar 

  19. Yin W, Chen C, Fa H, Zhang L (2013) Electropolymerization of CoTPP and its catalytic performance for oxygen-reduction reaction in an acid medium. J Solid State Electrochem 17:3095–3099

    Article  CAS  Google Scholar 

  20. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951

    Article  CAS  Google Scholar 

  21. Othman R, Dicks AL, Zhu Z (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrog Energy 37:357–372

    Article  CAS  Google Scholar 

  22. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49:3557–3566

    Article  CAS  Google Scholar 

  23. Jiujun Z (2008) PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications. Zhang, Jiujun edn. London

  24. Guo J, He H, Chu D, Chen R (2012) OH-binding effects on metallophthalocyanine catalysts for O2 reduction reaction in anion exchange membrane fuel cells. Electrocatalysis 3:252–264

    Article  CAS  Google Scholar 

  25. Gojković SL, Gupta S, Savinell RF (1999) Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: part II. Kinetics of oxygen reduction. J Electroanal Chem 462:63–72

    Article  Google Scholar 

  26. Vasudevan P, Santosh MN, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transit Met Chem 15:81–90

    Article  CAS  Google Scholar 

  27. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  28. Zagal J, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127:1506–1517

    Article  CAS  Google Scholar 

  29. Blurton KF, McMullin E (1969) A comparison of fuel cell performance in acid and alkaline electrolyte. Energy Convers 9:141–144

    Article  CAS  Google Scholar 

  30. Kozawa A, Zilionis VE, Brodd RJ (1970) Oxygen and hydrogen peroxide reduction at a ferric phthalocyanine-catalyzed graphite electrode. J Electrochem Soc 117:1470–1474

    Article  CAS  Google Scholar 

  31. Ouedraogo S, Bayo-Bangoura M, Ouemega B, Bayo K, Guel B (2014) Study of a series of cobalt and zinc phthalocyanines by chronoamperometry and chronocoulometry. J Soc Ouest-Afr Chim 037:1–9

    Google Scholar 

  32. Obirai J, Rodrigues NP, Bedioui F, Nyokong T (2003) Synthesis, spectral and electrochemical properties of a new family of pyrrole substituted cobalt, iron, manganese, nickel and zinc phthalocyanine complexes. J Porphyrins Phthalocyanines 07:508–520

    Article  CAS  Google Scholar 

  33. Bayo K, Bayo-Bangoura M, Mossoyan-Deneux M, Lexa D, Ouedraogo GV (2007) Étude des interactions intramoléculaires dans les bimétallophtalocyanines par électrochimie et par spectroélectrochimie. C R Chim 10:482–488

    Article  CAS  Google Scholar 

  34. Ouemega B, Bayo-Bangoura M, Bayo K (2011) Synthesis and characterization of gold phthalocyanine. J Soc Ouest-Afr Chim 031:42–48

    Google Scholar 

  35. Bayo K, Ouedraogo GV, Terzian G, Benlian D (1990) UV–visible and IR spectra of iron(II) phthalocyanine polymer complexes linked by bis-pyridinato ligands. Polyhedron 9:1087–1090

    Article  CAS  Google Scholar 

  36. Zanguina A, Bayo-Bangoura M, Bayo K, Ouedraogo GV (2002) IR and UV–Visible spectra of iron(II) phthalocyanine complexes with phosphite. Bull Chem Soc Ethiopia 16:73–76

    Article  CAS  Google Scholar 

  37. Hebié S, Cornu L, Napporn TW, Rousseau J, Kokoh BK (2013) Insight on the surface structure effect of free gold nanorods on glucose electrooxidation. J Phys Chem C 117:9872–9880

    Article  Google Scholar 

  38. Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  39. Ozoemena KI, Nyokong T (2006) Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochim Acta 51:2669–2677

    Article  CAS  Google Scholar 

  40. Sehlotho N, Durmus M, Ahsen V, Nyokong T (2008) The synthesis and electrochemical behaviour of water soluble manganese phthalocyanines: anion radical versus Mn(I) species. Inorg Chem Commun 11:479–483

    Article  CAS  Google Scholar 

  41. Sehlotho N, Nyokong T (2006) Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen. J Electroanal Chem 595:161–167

    Article  CAS  Google Scholar 

  42. Obirai J, Nyokong T (2004) Electrochemical studies of manganese tetraamminophthalocyanine monomer and polymer. Electrochim Acta 49:1417–1428

    Article  CAS  Google Scholar 

  43. Baker R, Wilkinson DP, Zhang J (2008) Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53:6906–6919

    Article  CAS  Google Scholar 

  44. Chauke V, Matemadombo F, Nyokong T (2010) Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni–O–Ni bridges. J Hazard Mater 178:180–186

    Article  CAS  Google Scholar 

  45. Chen R, Li H, Chu D, Wang G (2009) Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J Phys Chem C 113:20689–20697

    Article  CAS  Google Scholar 

  46. Wang G, Ramesh N, Hsu A, Chu D, Chen R (2008) Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Mol Simul 34:1051–1056

    Article  Google Scholar 

  47. Habrioux A, Diabaté D, Rousseau J, Napporn T, Servat K, Guétaz L, Trokourey A, Kokoh K (2010) Electrocatalytic activity of supported Au–Pt nanoparticles for CO oxidation and O2 reduction in alkaline medium. Electrocatalysis 1:51–59

    Article  CAS  Google Scholar 

  48. Diabaté D, Napporn TW, Servat K, Habrioux A, Arrii-Clacens S, Trokourey A, Kokoh KB (2013) Kinetic study of oxygen reduction reaction on carbon supported Pd-based nanomaterials in alkaline medium. J Electrochem Soc 160:H302–H308

    Article  Google Scholar 

  49. Devivaraprasad R, Ramesh R, Naresh N, Kar T, Singh RK, Neergat M (2014) Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes. Langmuir 30:8995–9006

    Article  CAS  Google Scholar 

  50. Xing W, Yin M, Lv Q, Hu Y, Liu C, Zhang J (2014) 1 - Oxygen solubility, diffusion coefficient, and solution viscosity. In: Rotating electrode methods and oxygen reduction electrocatalysts. Edited by Zhang WXY Amsterdam: Elsevier, 1–299

  51. Davis RE, Horvath GL, Tobias CW (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297

    Article  CAS  Google Scholar 

  52. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254:2755

    Article  CAS  Google Scholar 

  53. Zagal JH, Cárdenas-Jirón GI (2000) Reactivity of immobilized cobalt phthalocyanines for the electroreduction of molecular oxygen in terms of molecular hardness. J Electroanal Chem 489:96–100

    Article  CAS  Google Scholar 

  54. Isaacs M, Aguirre MJ, Toro-Labbé A, Costamagna J, Páez M, Zagal JH (1998) Comparative study of the electrocatalytic activity of cobalt phthalocyanine and cobalt naphthalocyanine for the reduction of oxygen and the oxidation of hydrazine. Electrochim Acta 43:1821–1827

    Article  CAS  Google Scholar 

  55. Ding L, Qiao J, Dai X, Zhang J, Zhang J, Tian B (2012) Highly active electrocatalysts for oxygen reduction from carbon-supported copper-phthalocyanine synthesized by high temperature treatment. Int J Hydrog Energy 37:14103–14113

    Article  CAS  Google Scholar 

  56. Holade Y, Sahin N, Servat K, Napporn T, Kokoh K (2015) Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells. Catalysts 5:310–348

    Article  CAS  Google Scholar 

  57. Van Den Brink F, Visscher W, Barendrecht E (1983) Electrocatalysis of cathodic oxygen reduction by metallophthalocyanines: part II. Cobalt phthalocyanine as electrocatalyst: a mechanism of oxygen reduction. J Electroanal Chem Interfacial Electrochem 157:305–318

    Google Scholar 

  58. Van Den Brink F, Visscher W, Barendrecht E (1983) Electrocatalysis of cathodic oxygen reduction by metallophthalocyanines: part I. Introduction, cobalt phthalocyanine as electrocatalyst: experimental part. J Electroanal Chem Interfacial Electrochem 157:283–304

    Google Scholar 

  59. Piana M, Catanorchi S, Gasteiger HA (2008) Kinetics of Non-platinum group metal catalysts for the oxygen reduction reaction in alkaline medium. ECS Trans 16:2045–2055

    Article  CAS  Google Scholar 

  60. Reis RM, Valim RB, Rocha RS, Lima AS, Castro PS, Bertotti M, Lanza MRV (2014) The use of copper and cobalt phthalocyanines as electrocatalysts for the oxygen reduction reaction in acid medium. Electrochim Acta 139:1–6

    Article  CAS  Google Scholar 

  61. Ponce J, Rehspringer JL, Poillerat G, Gautier JL (2001) Electrochemical study of nickel–aluminium–manganese spinel NixAl1 −xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 46:3373–3380

    Article  CAS  Google Scholar 

  62. Duan Z, Wang G (2011) A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Phys Chem Chem Phys 13:20178–20187

    Article  CAS  Google Scholar 

  63. Kitaoka Y, Sakai T, Nakamura K, Akiyama T, Ito T (2013) Magnetism and multiplets in metal-phthalocyanine molecules. J Appl Phys 113:17E130-117E130-133

    Article  Google Scholar 

  64. Kruusenberg I, Mondal J, Matisen L, Sammelselg V, Tammeveski K (2013) Oxygen reduction on graphene-supported MN4 macrocycles in alkaline media. Electrochem Commun 33:18–22

    Article  CAS  Google Scholar 

  65. Jiang Y, Lu Y, Lv X, Han D, Zhang Q, Niu L, Chen W (2013) Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal 3:1263–1271

    Article  CAS  Google Scholar 

  66. Yuan Y, Zhao B, Jeon Y, Zhong S, Zhou S, Kim S (2011) Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresour Technol 102:5849–5854

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University of Ouagadougou, the University of Poitiers, and Region Poitou-Charentes for their financial support. S. Hebié is particularly grateful to the Region Poitou-Charentes for supporting his Master research grant (Bourse Régionale de la Découverte 2009–2010, grant number : 932-28 EFFM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Boniface Kokoh.

Additional information

This paper is dedicated to Professor José H. Zagal on the occasion of his 65th birthday and in recognition of his outstanding contribution to the ORR mechanism on metallophthalocyanine and metalloporphyrin catalysts

Electronic supplementary material

ESM 1

(DOC 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebié, S., Bayo-Bangoura, M., Bayo, K. et al. Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution. J Solid State Electrochem 20, 931–942 (2016). https://doi.org/10.1007/s10008-015-2932-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2932-6

Keywords

Navigation