Skip to main content
Log in

Temperature dependence of the conductivity of plasticized poly(vinyl chloride)-low molecular weight liquid 50% epoxidized natural rubber solid polymer electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Characterizations were carried out to study on a new plasticized solid polymer electrolyte that was composed of blends of poly(vinyl chloride) (PVC), liquid 50% epoxidized natural rubber (LENR50), ethylene carbonate, and polypropylene carbonate. This freestanding solid polymer electrolyte (SPE) was successfully prepared by solution casting technique. Further analysis and characterizations were carried out by using scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimeter (DSC), Fourier transform infrared (ATR-FTIR), and impedance spectroscopy (EIS). The SEM results show that the morphologies of SPEs are compatible with good homogeneity. No agglomeration was observed. However, upon addition of salt, formation of micropores occurred. It is worth to note that micropores improve the mobility of ions in the SPE system, thus increased the ionic conductivity whereas the crystallinity analysis for SPEs indicates that the LiClO4 salt is well complexed in the plasticized PVC-LENR50 as no sharp crystallinity peak was observed for 5–15% wt. LiClO4. This implies that LiClO4 salt interacts with polymer host as more bonds are form via coordination bonding. In DSC study, it is found that the glass temperature (T g) increased with the concentration of LiClO4. The lowest T g was obtained at 41.6 °C when incorporated with 15% wt. LiClO4. The features of complexation in the electrolyte matrix were studied using ATR-FTIR at the peaks of C=O, C–O–C, and C–Cl. In EIS analysis, the highest ionic conductivity obtained was 1.20 × 10−3 S cm−1 at 15% wt. LiClO4 at 353 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bruce PG (1995) Solid state electrochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  2. Gray FM (1991) Solid polymer electrolyte—fundamentals and technological applications. RSC Material Monographs, London

    Google Scholar 

  3. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Ionics 16:161–170

    Article  CAS  Google Scholar 

  4. Ramesh S, Ng KY (2009) Curr App Phys 9:329–332

    Article  Google Scholar 

  5. Baskaran R, Selvasekarapandin S, Kuwata N, Kawamura J, Hattori T (2007) J Phys Chem Sol 68:407–412

    Article  CAS  Google Scholar 

  6. Reddy TJR, Archari VBS, Sharma AK, Rao VVRN (2007) Ionics 12:435–439

    Article  Google Scholar 

  7. Rajendran S, Uma T (2001) Ionics 7:122–125

    Article  CAS  Google Scholar 

  8. Ramesh S, Chai MF (2007) Mater Sci Eng B 139:240

    Article  CAS  Google Scholar 

  9. Soo JP, Han AR, Jae SS, Kim S (2010) Macromol Res 18:336–340

    Article  Google Scholar 

  10. Rahman CT, Zaman K (1999) Phys Res B 152:335–342

    Google Scholar 

  11. Yan JW, Dukjoon K (2007) Electrochim Acta 52:3181–3189

    Article  Google Scholar 

  12. Rahman CT, Kamaruddin S, Sivachalam Y, Talib M, Yahya N (2006) Poly Testing 25:475–480

    Article  Google Scholar 

  13. Famiza L, Aziz M, Katun N, Ali AMM, Yahya MZ (2006) J Power Sources 159:1401–1404

    Article  Google Scholar 

  14. Glasses MD, Idris R, Latnam RJ, Linford RG, Schlindwein WS (2002) Solid State Ionics 147:289–294

    Article  Google Scholar 

  15. Noor SAM, Ahmad A, Rahman MYA, Talib IA (2010) Nat Sci 3:190–196

    Google Scholar 

  16. Nair MNR, Biju PK, Thomas GV, Nair MRG (2009) J App Poly Sci 111:48–56

    Article  CAS  Google Scholar 

  17. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2011) J Mater Sci App 2:817–825

    Google Scholar 

  18. Dahlan HM, Khairul ZMD, Ibrahim A (2000) J App Poly Sci 78:1776–1782

    Article  CAS  Google Scholar 

  19. Dahlan HM, Harun AG, Mamat R (1999) J Sains Nuklear Malaysia 17(1):1–13

    Google Scholar 

  20. Dahlan HM, Khairul ZMD, Abdullah I (2000) J Sains Nuklear Malaysia 18(1):9–21

    Google Scholar 

  21. Ramesh S, Arof AK (2001) J Power Sources 99:41–47

    Article  CAS  Google Scholar 

  22. Ahmad A, Rahman MYA, Ali MLM, Hashim H (2007) Ionics 13:67–70

    Article  CAS  Google Scholar 

  23. Ramesh S, Chiam WL, Morris E, Durairaj R (2010) Thermochim Acta 511:140–146

    Article  CAS  Google Scholar 

  24. Wanchart P, Jerold MS (1996) Elsevier Science 37(23):5109–5116

    Google Scholar 

  25. Fonseca CP, Cavalante JF, Amaral FA, Souza CAZ, Neves S (2007) Int J Electrochem Sci 2:52–60

    CAS  Google Scholar 

  26. Binod K, Stanley JR, Sateesh K (2002) Electrochim Acta 47:4125–4131

    Article  Google Scholar 

  27. Shembel EM, Chervakov OV, Neduzhko LI, Maksyuta IM, Polischuk YV, Reisner DE, Novak P, Meshri D (2001) J Power Science 96:20–28

    Article  CAS  Google Scholar 

  28. Rajendran S, Sivakumar P (2008) Physica B 403:509–516

    Article  CAS  Google Scholar 

  29. Low SP, Ahmad A, Rahman MYA (2010) Ionics 16:821–826

    Article  CAS  Google Scholar 

  30. Xuping Z, Lianyong S, Hua H, Hongli L, Zuhong L (1999) J Mater Sci Lett 18:1745–1747

    Article  CAS  Google Scholar 

  31. Subramania A, Sundaram KNT, Kumar GV, Vasudevan T (2006) Ionics 12:175–178

    Article  CAS  Google Scholar 

  32. Rajendran S, Sivakumar P, Ravi SB (2007) J Power Sources 164:815–821

    Article  CAS  Google Scholar 

  33. Ramesh S, Yahaya AH, Arof AK (2002) Solid State Ionics 152–253:291–294

    Article  Google Scholar 

  34. Michael MS, Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Solid State Ionics 98:167–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank UKM and the Malaysian Nuclear Agency Malaysia (Nuclear Malaysia) for providing the needs and helps in this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Ahmad or M. Y. A. Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.K., Afiqah, S., Ahmad, A. et al. Temperature dependence of the conductivity of plasticized poly(vinyl chloride)-low molecular weight liquid 50% epoxidized natural rubber solid polymer electrolyte. J Solid State Electrochem 16, 2251–2260 (2012). https://doi.org/10.1007/s10008-011-1633-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1633-z

Keywords

Navigation