Skip to main content
Log in

Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The potential of new porous solid polymer electrolyte (SPE) for poly (vinylidene fluoride)–poly (methyl methacrylate) grafted natural rubber (PVDF-MG49) doped with LiCF3SO3 based on application in electrochemical device system has been investigated. The characteristics of the samples are analyzed and studied using electron impedance spectroscopy (EIS), X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and linear sweep voltammetry (LSV). Ionic conductivity of 3.25 × 10−4 S cm−1 is achieved at room temperature, and the studies suggested that ion transport proceeds in these materials via a hopping mechanism similar to what is found in an ionic crystal. It is found that dielectric constant and dielectric loss increase with salt contents. A similar situation is also observed in electrical modulus. Analysis of XRD shows a decrease in crystallinity peaks of methyl methacrylate (MMA) in MG49 with the amount of added salt. The observations from SEM micrographs show porosity structure of polymer electrolyte. Based on the FTIR results, we are able to conjecture that interactions between the lithium ion and with the oxygen atoms from the MMA likely occur. Electrochemical studies show that polymer electrolyte has high electrochemical stability windows and is favorable for application in electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arbizzani C, Gabrielli G, Mastragostino M (2011) Thermal stability and flammability of electrolytes for lithium-on batteries. J Power Sources 196(10):4801–4805

    Article  CAS  Google Scholar 

  2. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  3. Bruce PG (1995) Solid state electrochemistry. Cambridge University Press, Great Britain

    Google Scholar 

  4. Lee TK, Ahmad A, Dahlan HM, Rahman MYA (2012) LiClO4 salt concentration effect on the properties of PVC-modified low molecular weight LENR50-based solid polymer electrolyte. J Appl Polym Sci 124:2227–2233

    Article  CAS  Google Scholar 

  5. Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36(7):945–979

    Article  CAS  Google Scholar 

  6. Lee TK, Afiqah S, Ahmad A, Dahlan HM, Rahman MYA (2012) Temperature dependence of the conductivity of plasticized poly (vinyl chloride)-low molecular weight liquid 50% epoxidized natural rubber solid polymer electrolyte. J Solid State Electrochem 16:2251–2260

    Article  CAS  Google Scholar 

  7. Perera MCS, Ishiaku US, Ishak ZAM (2001) Characterisation of PVC/NBR and PVC/ENR50 binary blends and PVC/ENR50/NBR ternary blends by DMA and solid state NMR. Eur Polym J 37:161–178

    Article  Google Scholar 

  8. Mago G, Kalyon DM, Fisher FT (2008) Membranes of polyvinylidene fluoride and PVDF nanocomposites with carbon nanotubes via immersion precipitation. Journal of Nanomaterials pp 1–8

  9. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2011) Effect of ethylene carbonate (EC) plasticizer on poly (vinyl chloride)-liquid 50% epoxidised natural rubber (LENR50) based polymer electrolyte. Mate Sci Appl 2:817–825

    Google Scholar 

  10. Zhu YSX, Gao W, Wang XJ, Hou YY, Liu LL, Wu YP (2012) A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochem Commun 22:29–32

    Article  CAS  Google Scholar 

  11. Gianmarco G, Federico B, Filippo N, Claudia D, Dominique R, Marinella L, Roberta B, Stefano T (2015) Multifunctional luminescent down-shifting fluoropolymer coatings: A straightforward strategy to improve the UV-light harvesting ability and long-term outdoor stability of organic dye-sensitized solar cells. Adv Energy Mater 5:1401312

    Google Scholar 

  12. Adriano S, Federico B, Stefano DLP, Micaela C, Stefano B, Roberto B, Candido FP (2015) Electrodes/electrolyte interfaces in the presence of a surface-modified photopolymer electrolyte: Application in Dye-sensitized solar cells. ChemPhysChem 16(5):960–969

    Article  CAS  Google Scholar 

  13. Li L, Zhang M, Ronga M, Ruan W (2014) Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv 4:3938–3943

    Article  CAS  Google Scholar 

  14. Zhang HP, Zhang P, Li ZH, Sun M, Wu YP (2007) A novel sandwiched membrane as polymer electrolyte for lithium ion battery. Electrochem Commun 9:1700–1703

    Article  CAS  Google Scholar 

  15. Shen YJ, Reddy MJ, Chu PP (2004) Porous PVDF with LiClO4 Complex as ’solid’ and ’wet’ polymer electrolyte. Solid State Ionics 175:747–750

    Article  CAS  Google Scholar 

  16. Angell CA, Liu C, Sanchez E (1993) Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362:137–139

    Article  CAS  Google Scholar 

  17. Ataollahi N, Ahmad A, Hamzah H, Rahman MYA, Mohamed NS (2013) Ionic conduction of blend poly (vinylidene fluoride-hexafluoro propylene) and poly (methyl methacrylate)-grafted natural rubber based solid polymer electrolyte. Int J Electrochem Sci 8:7875–7884

    Google Scholar 

  18. Ataollahi N, Ahmad A, Hamzah H, Rahman MYA, Mohamed NS (2012) Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int J Electrochem Sci 7:6693–6703

    CAS  Google Scholar 

  19. Kumutha K, Alias Y, Said R (2005) FTIR and thermal studies of modified natural rubber based polymer electrolytes. Ionics 11:472–476

    Article  CAS  Google Scholar 

  20. Idris R, Glasse MD, Latham RJ, Linford RG, Schlindwein WS (2001) Polymer electrolytes based on modified natural rubber for use in rechargeable lithium batteries. J Power Sources 94:206–211

    Article  CAS  Google Scholar 

  21. Gray FM (1991) Solid Polymer Electrolyte–fundamentals and technological applications. Wiley-VCH, United Kingdom

    Google Scholar 

  22. Yu B, Zhou F, Wang C, Liu W (2007) A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2- methyacryloyloxy ethyl imidazolium iodide). Eur Polym J 43:2699–2707

    Article  CAS  Google Scholar 

  23. Zhang C, Gamble S, Ainsworth D, Slawin AMZ, Andreev YG, Bruce PG (2009) Alkali metal crystalline polymer electrolytes. Nat Mater 8(7):580–584

    Article  CAS  Google Scholar 

  24. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA-PMMA solid polymer electrolytes. Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  25. Ramesh S, Liew CW, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J Non-Cryst Solids 357:2132–2138

    Article  CAS  Google Scholar 

  26. Saif AA, Jamal ZAZ, Sauli Z, Poopalan P (2011) Frequency dependent electrical properties of ferroelectric. Mater Sci 17(2):186–190

    Google Scholar 

  27. Ahmad Z, Isa MIN (2012) Ionics conduction via correlated barrier hoping mechanism in CMC–SA solid biopolymer electrolytes. Int J Latest Res Sci Technol 1(2):70–75

    Google Scholar 

  28. Ramesh S, Chai MF (2007) Conductivity, dielectric behavior and FTIR studies of high molecular weight poly (vinylchloride)–lithium triflate polymer electrolytes. Mater Sci Eng B 139:240–245

    Article  CAS  Google Scholar 

  29. Ramesh S, Ong PL (2010) Effect of ethylene carbonate on the ionic conduction in poly (vinylidenefluoride-hexafluropropylene) based solid polymer electrolytes. Polym Chem 1:702–707

    Article  CAS  Google Scholar 

  30. Ibrahim S, Mohd Yasin SM, Nee NM, Ahmad R, Johan MR (2012) Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun 152(5):426–434

    Article  CAS  Google Scholar 

  31. Pandey K, Singh M, Asthana N, Dwivedi MM, Agrawal SL (2011) Development of magnisio ferrite doped polymer electrolyte system for battery application. Int J Mater Sci 1:9–17

    Google Scholar 

  32. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and AC conductivity behaviour of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3:597–608

    CAS  Google Scholar 

  33. Tripath SK, Gupta A, Kumari M (2012) Studies on electrical conductivity and dielectric behaviour of PVDF–HFP–PMMA–NaI polymer blend electrolyte. Bull Mater Sci 35(6):969–975

    Article  CAS  Google Scholar 

  34. Su’ait MS, Ahmad A, Hamzah H, Rahman MYA (2011) Effect of lithium salt concentrations on blended 49% poly (methyl methacrylate) grafted natural rubber and poly (methyl methacrylate) based solid polymer electrolyte. Electrochim Acta 57:123–131

    Article  CAS  Google Scholar 

  35. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2001) Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 6(1):137–147

    Article  CAS  Google Scholar 

  36. Rajendran S, Sivakumar M, Subadevi R, Nirmala M (2004) Characterization of PVA–PVDF based solid polymer blend electrolytes. Phys B Condens Matter 348:73–78

    Article  CAS  Google Scholar 

  37. Rajendran S, Mahendran O, Mahalingam T (2002) Thermal and ionic conductivity studies of plasticized pmma/pvdf blend polymer electrolytes. Eur Polym J 38(1):49–55

    Article  CAS  Google Scholar 

  38. Zygadło-Monikowska E, Florjańczyk Z, Rogalska-Jońska E, Werbanowska A, Tomaszewska A, Langwald N, Greenbaum SG (2007) Lithium ion transport of solid electrolytes based on PEO/CF3SO3Li and aluminium carboxylate. J Power Sources 173:734–742

    Article  CAS  Google Scholar 

  39. Rajendran S, Kannan R, Mahendran O (2001) An electrochemical investigation on PMMA-PVDF blend based polymer electrolytes. Mater Lett 49:172–179

    Article  CAS  Google Scholar 

  40. Nallasamy P, Mohan S (2005) Vibrational Spectroscopic characterization of form II poly (vinylidene fluoride). Indian J Pure Appl Phys 43:821–827

    CAS  Google Scholar 

  41. Miao R, Liu B, Zhu Z, Liu Y, Li J, Wang X, Li Q (2008) PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J Power Sources 184(2):420–426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to acknowledge the School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia, for allowing this research to be carried out. This work was funded by UKM under grant no. UKM-DLP-2012-021. We also would like to thank MOSTI for providing financial support under research grant of NND/NM (2)/TD11-046.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. TianKhoon or A. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TianKhoon, L., Ataollahi, N., Hassan, N.H. et al. Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J Solid State Electrochem 20, 203–213 (2016). https://doi.org/10.1007/s10008-015-3017-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3017-2

Keywords

Navigation