Skip to main content
Log in

Interplay between halogen bonds and hydrogen bonds in OH/SH···HOX···HY (X = Cl, Br; Y = F, Cl, Br) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The character of the cooperativity between the HOX···OH/SH halogen bond (XB) and the Y―H···(H)OX hydrogen bond (HB) in OH/SH···HOX···HY (X = Cl, Br; Y = F, Cl, Br) complexes has been investigated by means of second-order Møller−Plesset perturbation theory (MP2) calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The geometries of the complexes have been determined from the most negative electrostatic potentials (V S,min) and the most positive electrostatic potentials (V S,max) on the electron density contours of the individual species. The greater the V S,max values of HY, the larger the interaction energies of halogen-bonded HOX···OH/SH in the termolecular complexes, indicating that the ability of cooperative effect of hydrogen bond on halogen bond are determined by V S,max of HY. The interaction energies, binding distances, infrared vibrational frequencies, and electron densities ρ at the BCPs of the hydrogen bonds and halogen bonds prove that there is positive cooperativity between these bonds. The potentiation of hydrogen bonds on halogen bonds is greater than that of halogen bonds on hydrogen bonds. QTAIM studies have shown that the halogen bonds and hydrogen bonds are closed-shell noncovalent interactions, and both have greater electrostatic character in the termolecular species compared with the bimolecular species.

The character of the cooperativity between the X···O/S halogen bond (XB) and the Y―H···O hydrogen bond (HB) in OH/SH···HOX···HY (X=Cl, Br; Y=F, Cl, Br) complexes has been investigated by means of second-order Møller—Plesset perturbation theory (MP2) calculations and “quantum theory of atoms in molecules” (QTAIM) studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Metrangolo P, Resnati G (2008) Science 321:918–919

    Article  CAS  Google Scholar 

  2. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2010) Theor Chem Acc 126:1–14

    Article  CAS  Google Scholar 

  3. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  4. Voth AR, Hays FA, Ho PS (2007) Proc Natl Acad Sci USA 104:6188–6193

    Article  CAS  Google Scholar 

  5. Matter H, Nazaré M, Güssregen S, Will DW, Schreuder H, Bauer A, Urmann M, Ritter K, Wagner M, Wehner V (2009) Angew Chem Int Ed 48:2911–2916

    Article  CAS  Google Scholar 

  6. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Chem Soc Rev 40:2267–2278

    Article  CAS  Google Scholar 

  7. Maitland GC, Rigby M, Smith EB, Wakeham WA (1981) Intermolecular forces their origin and determination. Oxford University Press, Oxford

    Google Scholar 

  8. Legon AC (2010) Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  9. Allen FH, Howard JAK, Hoy VJ, Desiraju GR, Reddy DS, Wilson CC (1996) J Am Chem Soc 118:4081–4084

    Article  CAS  Google Scholar 

  10. Hudson BS, Braden DA, Allis DG, Jenkins T, Baronov S, Middleton C, Withnall R, Brown CM (2004) J Phys Chem A 108:7356–7363

    Article  CAS  Google Scholar 

  11. Metrangolo P, Carcenac Y, Lahtinen M, Pilati T, Rissanen K, Vij A, Resnati G (2009) Science 323:1461–1464

    Article  CAS  Google Scholar 

  12. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  13. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  14. Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) J Am Chem Soc 126:16–17

    Article  CAS  Google Scholar 

  15. Li R, Li Q, Cheng J, Liu Z, Li W (2011) Chemphyschem 12:2289–2295

    Article  CAS  Google Scholar 

  16. Li Q, Lin Q, Li W, Cheng J, Gong B, Sun J (2008) Chemphyschem 9:2265–2269

    Article  CAS  Google Scholar 

  17. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  18. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  19. Grabowski SJ, Bilewicz E (2006) Chem Phys Lett 427:51–55

    Article  CAS  Google Scholar 

  20. Lu Y, Liu Y, Li H, Zhu X, Liu H, Zhu W (2012) Chemphyschem 13:2154–2161

    Article  CAS  Google Scholar 

  21. Espallargas GM, Zordan F, Marín LA, Adams H, Shankland K, van de Streek J, Brammer L (2009) Chem Eur J 15:7554–7568

    Article  Google Scholar 

  22. Hawkins CL, Davies MJ (2005) Free Radic Biol Med 39:900–912

    Article  CAS  Google Scholar 

  23. Weiss SJ, Test ST, Eckmann CM, Roos D, Recvani S (1986) Science 234:200–203

    Article  CAS  Google Scholar 

  24. Aldridge RE, Chan T, Van Dalen CJ, Senthilmohan R, Winn M, Venge P, Town GI, Kettle AJ (2002) Free Radic Biol Med 33:847–856

    Article  CAS  Google Scholar 

  25. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  26. Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  27. Murray JS, Politzer P (1998) J Mol Struct (THEOCHEM) 425:107–114

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS (1999) Trends Chem Phys 7:157–165

    CAS  Google Scholar 

  29. Politzer P, Murray JS (2001) Fluid Phase Equil 185:129–137

    Article  CAS  Google Scholar 

  30. Hagelin H, Brinck T, Murray JS, Berthelot M, Politzer P (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

  31. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theor Comput 5:155–163

    Article  CAS  Google Scholar 

  32. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  33. Shields ZP, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832

    Article  CAS  Google Scholar 

  34. Zeng Y, Zhu M, Meng L, Zheng S (2011) Chemphyschem 12:3584–3590

    Article  CAS  Google Scholar 

  35. Zeng Y, Zhu M, Li X, Zheng S, Meng L (2012) J Comput Chem 33:1321–1327

    Article  CAS  Google Scholar 

  36. Bader RFW (1990) Atoms in Molecules-A Quantum Theory. Oxford University Press, Oxford, UK

    Google Scholar 

  37. Popelier P (2000) Atoms in molecules: an introduction. UMIST, Manchester, UK

    Google Scholar 

  38. Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules. From solid state to DNA and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G., Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, CT

  40. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  41. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  42. Woon DE, Dunning TH (1995) J Chem Phys 103:4572–4585

    Article  CAS  Google Scholar 

  43. Duarte DJR, de las Vallejos MM (2010) J Mol Model 16:737–748

    Article  CAS  Google Scholar 

  44. Li Q, Wang H, Liu Z (2009) J Phys Chem A 113:14156–14160

    Article  CAS  Google Scholar 

  45. Bene JED, Alkorta I, Elguero J (2009) J Phys Chem A 113:10327–10334

    Article  Google Scholar 

  46. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  47. Keith TA (2012) AIMALL, version 12.06.03

  48. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  49. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  50. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  51. Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  52. LaPointe SM, Farrag S, Boyd RJ, Bohórquez HJ (2009) J Phys Chem B 113:10957–10964

    Article  CAS  Google Scholar 

  53. Grabowski SJ (2011) Chem Rev 111:2597–2625

    Article  CAS  Google Scholar 

  54. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  55. Bone RGA, Bader RFW (1996) J Phys Chem 100:10892–10911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks for International Science Editing to edit this paper. This work was supported by the National Natural Science Foundation of China (21102033, 21171047, 20973053, 21073051), the Natural Science Foundation of Hebei Province (B2010000371, B2011205058), the Education Department Foundation of Hebei Province (ZH2012106, ZD2010126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanli Zeng or Lingpeng Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Zeng, Y., Li, X. et al. Interplay between halogen bonds and hydrogen bonds in OH/SH···HOX···HY (X = Cl, Br; Y = F, Cl, Br) complexes. J Mol Model 19, 1069–1077 (2013). https://doi.org/10.1007/s00894-012-1657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1657-z

Keywords

Navigation