Skip to main content
Log in

Mannosylglycerate: structural analysis of biosynthesis and evolutionary history

  • Special Issue: Review
  • 10th International Congress on Extremophiles
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Halophilic and halotolerant microorganisms adapted to thrive in hot environments accumulate compatible solutes that usually have a negative charge either associated with a carboxylic group or a phosphodiester unit. Mannosylglycerate (MG) has been detected in several members of (hyper)thermophilic bacteria and archaea, in which it responds primarily to osmotic stress. The outstanding ability of MG to stabilize protein structure in vitro as well as in vivo has been convincingly demonstrated. These findings led to an increasingly supported link between MG and microbial adaptation to high temperature. However, the accumulation of MG in many red algae has been known for a long time, and the peculiar distribution of MG in such distant lineages was intriguing. Knowledge on the biosynthetic machinery together with the rapid expansion of genome databases allowed for structural and phylogenetic analyses and provided insight into the distribution of MG. The two pathways for MG synthesis have distinct evolutionary histories and physiological roles: in red algae MG is synthesised exclusively via the single-step pathway and most probably is unrelated with stress protection. In contrast, the two-step pathway is strongly associated with osmoadaptation in (hyper)thermophilic prokaryotes. The phylogenetic analysis of the two-step pathway also reveals a second cluster composed of fungi and mesophilic bacteria, but MG has not been demonstrated in members of this cluster; we propose that the synthase is part of a more complex pathway directed at the synthesis of yet unknown molecules containing the mannosyl-glyceryl unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MGS:

Mannosylglycerate synthase

MPGS:

Mannosyl-3-phosphoglycerate synthase

MPGP:

Mannosyl-3-phosphoglycerate phosphatase

MPG:

Mannosyl-3-phosphoglycerate

MGH:

Mannosylglycerate hydrolase

GTs:

Glycosyltransferases

PhoMPGS:

Pyrococcus horikoshii OT3 MPGS

TthMPGS:

Thermus thermophilus HB27 MPGS

RmaMGS:

Rhodothermus marinus MGS

r.m.s.d.:

Root mean square deviation

SSM:

Secondary structure matching

RmMGS∆15 :

Rhodothermus marinus MGS 15 residues truncated at the C-terminus

RxyMPGS/GPGS:

Rubrobacter xylanophilus MPGS/GPGS

3-PGA:

3-d-phosphoglycerate

M2+ :

Generic divalent co-catalytic metal ion

NDP:

Nucleoside diphosphate

HGT:

Horizontal gene transfer

References

  • Alarico S, Empadinhas N, da Costa MS (2013) A new bacterial hydrolase specific for the compatible solutes α-d-mannopyranosyl-(1→2)-d-glycerate and α-d-glucopyranosyl-(1→2)-d-glycerate. Enzyme Microb Technol 52:77–83

    Article  CAS  PubMed  Google Scholar 

  • Ascêncio SD, Orsato A, França RA, Duarte MER, Noseda MD (2006) Complete 1H and 13C NMR assignment of digeneaside, a low-molecular-mass carbohydrate produced by red seaweeds. Carbohydr Res 341:677–682

    Article  PubMed  Google Scholar 

  • Behrends V, Williams KJ, Jenkins VA, Robertson BD, Bundy JG (2012) Free glucosylglycerate is a novel marker of nitrogen stress in Mycobacterium smegmatis. J Proteome Res 11:3888–3896

    Article  CAS  PubMed  Google Scholar 

  • Bondu S, Cerantola S, Kervarec N, Deslandes E (2009) Impact of the salt stress on the photosynthetic carbon flux and 13C-label distribution within floridoside and digeneaside in Solieria chordalis. Phytochemistry 70:173–184

    Article  CAS  PubMed  Google Scholar 

  • Borges N (2005) The Role of Mannosylglycerate in Thermo- and Osmo-Adaptation of Rhodothermus marinus: Biosynthesis, Regulation and Applications. Ph.D. Thesis dissertation, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

  • Borges N, Marugg JD, Empadinhas N, da Costa MS, Santos H (2004) Specialized roles of the two pathways for the synthesis of mannosylglycerate in osmoadaptation and thermoadaptation of Rhodothermus marinus. J Biol Chem 279:9892–9898

    Article  CAS  PubMed  Google Scholar 

  • Bouveng H, Lindberg B, Wickberg B (1955) Low-molecular carbohydrates in algae. Structure of the glyceric acid mannoside from red algae. Acta Chem Scand 9:807–809

    Article  CAS  Google Scholar 

  • Broberg A, Kenne L, Pedersén M (1998) In-situ identification of major metabolites in the red alga Gracilariopsis lemaneiformis using high-resolution magic angle spinning nuclear, magnetic resonance spectroscopy. Planta 206:300–307

    Article  CAS  Google Scholar 

  • Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361:1003–1034

    Article  CAS  PubMed  Google Scholar 

  • Claude A, Bondu S, Michaud F, Bourgougnon N, Deslandes E (2009) X-ray structure of a sodium salt of digeneaside isolated from red alga Ceramium botryocarpum. Carbohydr Res 344:707–710

    Article  CAS  PubMed  Google Scholar 

  • Colin H, Augier J (1939) Un glucide original chez les floridées du genre Polysiphonia le d-mannoside de l-glycérate de sodium. C R Acad Sci 208:1450–1453

    CAS  Google Scholar 

  • Costa J, Empadinhas N, Gonçalves L, Lamosa P, Santos H, da Costa MS (2006) Characterization of the biosynthetic pathway of glucosylglycerate in the archaeon Methanococcoides burtonii. J Bacteriol 188:1022–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  CAS  PubMed  Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  Google Scholar 

  • Eggert A, Nitschke U, West JA, Michalik D, Karsten U (2007) Acclimation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. J Exp Mar Biol Ecol 343:176–186

    Article  CAS  Google Scholar 

  • Empadinhas N (2005) Pathways for the synthesis of mannosylglycerate in prokaryotes: genes, enzymes and evolutionary implications. Ph.D. Thesis Dissertation, University of Coimbra, Portugal

  • Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9:199–206

    CAS  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2008a) To be or not to be a compatible solute: bioversatility of mannosylglycerate and glucosylglycerate. Syst Appl Microbiol 31:159–168

    Article  CAS  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2008b) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–161

    CAS  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2011) Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea. Environ Microbiol 13:2056–2077

    Article  CAS  PubMed  Google Scholar 

  • Empadinhas N, Marugg JD, Borges N, Santos H, da Costa MS (2001) Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes. J Biol Chem 276:43580–43588

    Article  CAS  PubMed  Google Scholar 

  • Empadinhas N, Albuquerque L, Henne A, Santos H, da Costa MS (2003) The bacterium Thermus thermophilus, like hyperthermophilic archaea, uses a two-step pathway for the synthesis of mannosylglycerate. Appl Environ Microbiol 69:3272–3279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Empadinhas N, Albuquerque L, Costa J, Zinder SH, Santos MA, Santos H, da Costa MS (2004) A gene from the mesophilic bacterium Dehalococcoides ethenogenes encodes a novel mannosylglycerate synthase. J Bacteriol 186:4075–4084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Empadinhas N, Mendes V, Simões C, Santos MS, Mingote A, Lamosa P, Santos H, da Costa MS (2007) Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile. Extremophiles 11:667–673

    Article  CAS  PubMed  Google Scholar 

  • Empadinhas N, Albuquerque L, Mendes V, Macedo-Ribeiro S, da Costa MS (2008) Identification of the mycobacterial glucosyl-3-phosphoglycerate synthase. FEMS Microbiol Lett 280:195–202

    Article  CAS  PubMed  Google Scholar 

  • Empadinhas N, Pereira PJ, Albuquerque L, Costa J, Sá-Moura B, Marques AT, Macedo-Ribeiro S, da Costa MS (2011) Functional and structural characterization of a novel mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus reveals its dual substrate specificity. Mol Microbiol 79:76–93

    Article  CAS  PubMed  Google Scholar 

  • Faria C, Jorge CD, Borges N, Tenreiro S, Outeiro TF, Santos H (2013) Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson’s disease. Biochim Biophys Acta 1830:4065–4072

    Article  CAS  PubMed  Google Scholar 

  • Fernandes C, Empadinhas N, da Costa MS (2007) Single-step pathway for synthesis of glucosylglycerate in Persephonella marina. J Bacteriol 189:4014–4019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flint J, Taylor E, Yang M, Bolam DN, Tailford LE, Martinez-Fleites C, Dodson EJ, Davis BG, Gilbert HJ, Davies GJ (2005) Structural dissection and high-throughput screening of mannosylglycerate synthase. Nat Struct Mol Biol 12:608–614

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves LG, Huber R, da Costa MS, Santos H (2003) A variant of the hyperthermophile Archaeoglobus fulgidus adapted to grow at high salinity. FEMS Microbiol Lett 218:239–244

    Article  PubMed  Google Scholar 

  • Gonçalves S, Borges N, Esteves AM, Victor BL, Soares CM, Santos H, Matias PM (2010) Structural analysis of Thermus thermophilus HB27 mannosyl-3-phosphoglycerate synthase provides evidence for a second catalytic metal ion and new insight into the retaining mechanism of glycosyltransferases. J Biol Chem 285:17857–17868

    Article  PubMed Central  PubMed  Google Scholar 

  • Gonçalves S, Esteves AM, Santos H, Borges N, Matias PM (2011a) Three-dimensional structure of mannosyl-3-phosphoglycerate phosphatase from Thermus thermophilus HB27: a new member of the haloalcanoic acid dehalogenase superfamily. Biochemistry 50:9551–9567

    Article  PubMed  Google Scholar 

  • Gonçalves S, Esteves AM, Borges N, Santos H, Matias PM (2011b) Crystallization and preliminary X-ray analysis of mannosyl-3-phosphoglycerate phosphatase from Thermus thermophilus HB27. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:390–396

    Article  PubMed Central  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karsten U, Barrow KD, Mostaert AS, King RJ, West JA (1994) 13C- and 1H-NMR studies on digeneaside in the red alga Caloglossa leprieurii—a re-evaluation of its osmotic significance. Plant Physiol Biochem 32:669–676

    CAS  Google Scholar 

  • Karsten U, Barrow KD, Nixdorf O, West JA, King RJ (1997) Characterization of mannitol metabolism in the mangrove red alga Caloglossa leprieurii (Montagne) J Agardh. Planta 201:173–178

    Article  CAS  Google Scholar 

  • Karsten U, Michalik D, Michalik M, West JA (2005) A new unusual low molecular weight carbohydrate in the red algal genus Hypoglossum (Delesseriaceae, Ceramiales) and its possible function as osmolyte. Planta 222:319–326

    Article  CAS  PubMed  Google Scholar 

  • Karsten U, Görs S, Eggert A, West JA (2007) Trehalose, digeneaside, and floridoside in the Florideophyceae (Rhodophyta)—a reevaluation of its chemotaxonomic value. Phycologia 46:143–150

    Article  Google Scholar 

  • Kawamura T, Watanabe N, Tanaka I (2008) Structure of mannosyl-3-phosphoglycerate phosphatase from Pyrococcus horikoshii. Acta Crystallogr D Biol Crystallogr 64:1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Kirst GO, Bisson MA (1979) Regulation of turgor pressure in marine algae: ions and low-molecular-weight organic compounds. Aust J Plant Physiol 6:539–556

    CAS  Google Scholar 

  • Klähn S, Steglich C, Hess WR, Hagemann M (2010) Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol 12:83–94

    Article  PubMed  Google Scholar 

  • Koumanov A, Ruterjans H, Karshikoff A (2002) Continuum electrostatic analysis of irregular ionization and proton allocation in proteins. Proteins 46:85–96

    Article  CAS  PubMed  Google Scholar 

  • Kremer BP (1980) Taxonomic implications of algal photoassimilate patterns. Br Phycol J 15:399–409

    Article  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  • Lamosa P, Martins LO, da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Environ Microbiol 64:3591–3598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamosa P, Rodrigues MV, Gonçalves LG, Carr J, Ventura R, Maycock C, Raven ND, Santos H (2013) Organic solutes in the deepest phylogenetic branches of the Bacteria: identification of α(1-6)glucosyl-α(1-2)glucosylglycerate in Persephonella marina. Extremophiles 17:137–146

    Article  CAS  PubMed  Google Scholar 

  • Luley-Goedl C, Nidetzky B (2011) Glycosides as compatible solutes: biosynthesis and applications. Nat Prod Rep 28:875–896

    Article  CAS  PubMed  Google Scholar 

  • Martins LO, Santos H (1995) Accumulation of mannosylglycerate and di-myo-inositol-phosphate by Pyrococcus furiosus in response to salinity and temperature. Appl Environ Microbiol 61:3299–3303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins LO, Huber R, Huber H, Stetter KO, da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins LO, Empadinhas N, Marugg JD, Miguel C, Ferreira C, da Costa MS, Santos H (1999) Biosynthesis of mannosylglycerate in the thermophilic bacterium Rhodothermus marinus. Biochemical and genetic characterization of a mannosylglycerate synthase. J Biol Chem 274:35407–35414

    Article  CAS  PubMed  Google Scholar 

  • Müller V, Spanheimer R, Santos H (2005) Stress response by solute accumulation in archaea. Curr Opin Microbiol 8:729–736

    Article  PubMed  Google Scholar 

  • Neves C, da Costa MS, Santos H (2005) Compatible solutes of the hyperthermophile Palaeococcus ferrophilus: osmoadaptation and thermoadaptation in the order Thermococcales. Appl Environ Microbiol 71:8091–8098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen MM, Suits MD, Yang M, Barry CS, Martinez-Fleites C, Tailford LE, Flint JE, Dumon C, Davis BG, Gilbert HJ, Davies GJ (2011) Substrate and metal ion promiscuity in mannosylglycerate synthase. J Biol Chem 286:15155–15164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nobre A, Empadinhas N, Nobre MF, Lourenço EC, Maycock C, Ventura MR, Mingote A, da Costa MS (2013) The plant Selaginella moellendorffii possesses enzymes for synthesis and hydrolysis of the compatible solutes mannosylglycerate and glucosylglycerate. Planta 237:891–901

    Article  CAS  PubMed  Google Scholar 

  • Nunes OC, Manaia CM, da Costa MS, Santos H (1995) Compatible solutes in the thermophilic bacteria Rhodothermus marinus and “Thermus thermophilus”. Appl Environ Microbiol 61:2351–2357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quaiser A, Ochsenreiter T, Klenk HP, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen CW, Schleper C (2002) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603–611

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF (2004) Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci 9:1999–2019

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Santos H, da Costa MS (2001) Organic solutes from thermophiles and hyperthermophiles. Methods Enzymol 334:302–315

    Article  CAS  PubMed  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Santos H, Lamosa P, Faria TQ, Borges N, Neves C (2007) The physiological role, biosynthesis and mode of action of compatible solutes from (hyper)thermophiles. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM publishers, Washington, DC, pp 86–104

    Chapter  Google Scholar 

  • Santos H, Lamosa P, Faria TQ, Pais TM, de la Paz ML, Serrano L (2008) Compatible solutes of (hyper)thermophiles and their role in protein stabilization. In: Antranikian G, Driesen A, Robb F (eds) Thermophiles. CRC Taylor and Francis, USA

    Google Scholar 

  • Santos H, Lamosa P, Borges N, Gonçalves LG, Pais TM, Rodrigues MV (2011) Organic compatible solutes of prokaryotes that thrive in hot environments: the importance of ionic compounds for thermostabilization. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 497–520

    Chapter  Google Scholar 

  • Scheller HV, Harholt J, Ulvskov P (2010) Stress-tolerant plants expressing mannosylglycerate-producing enzymes. European Patent Office. (International publication number WO 2010/129574 A1)

  • Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  Google Scholar 

  • Treusch AH, Kletzin A, Raddat G, Ochsenreiter T, Quaiser A, Meurer G, Schuster SC, Schleper C (2004) Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea. Environ Microbiol 6:970–980

    Article  CAS  PubMed  Google Scholar 

  • Yang EC, Scott J, West JA, Yoon HS, Yokoyama A, Karsten U, de Goër SL, Orlova E (2011) Erythrolobus australicus sp. nov. (Porphyridiophyceae, Rhodophyta): a description based on several approaches. Algae 26:167–180

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Fundação para a Ciência e a Tecnologia (FCT): Projects PTDC/BIA-MIC/71146/2006, PTDC/BBB-BEP/2532/2012 and PEst-OE/EQB/LA0004/2011. C.D.J. and L.G. acknowledge FCT for the award of post-doc grants (SFRH/BPD/43410/2008 and SFRH/BPD/26905/2006, respectively). The NMR spectrometers are part of The National NMR Facility, supported by FCT (RECI/BBB-BQB/0230/2012). We thank Dr. Rasmus Larsen for the identification of the mgS gene from Caloglossa leprieurii and Dr. Clélia Neves for confirming the activity. We want to extent our acknowledgment to our co-workers in the many papers dealing with mannosylglycerate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Santos.

Additional information

Communicated by G. Antranikian.

C. D. Jorge and L. G. Gonçalves equally contributed.

This article is part of a special issue based on the 10th International Congress on Extremophiles held in Saint Petersburg, Russia, September 7–11, 2014.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, N., Jorge, C.D., Gonçalves, L.G. et al. Mannosylglycerate: structural analysis of biosynthesis and evolutionary history. Extremophiles 18, 835–852 (2014). https://doi.org/10.1007/s00792-014-0661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0661-x

Keywords

Navigation