Skip to main content
Log in

Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The thermophilic and halotolerant nature of Rubrobacter xylanophilus led us to investigate the accumulation of compatible solutes in this member of the deepest lineage of the Phylum Actinobacteria. Trehalose and mannosylglycerate (MG) were the major compounds accumulated under all conditions examined, including those for optimal growth. The addition of NaCl to a complex medium and a defined medium had a slight or negligible effect on the accumulation of these compatible solutes. Glycine betaine, di-myo-inositol-phosphate (DIP), a new phosphodiester compound, identified as di-N-acetyl-glucosamine phosphate and glutamate were also detected but in low or trace levels. DIP was always present, except at the highest salinity examined (5% NaCl) and at the lowest temperature tested (43°C). Nevertheless, the levels of DIP increased with the growth temperature. This is the first report of MG and DIP in an actinobacterium and includes the identification of the new solute di-N-acetyl-glucosamine phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bax A, Summers MF (1986) 1H and 13C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J Am Chem Soc 108:2093–2094

    Article  CAS  Google Scholar 

  • Bouveng H, Lindberg B, Wickberg B (1955) Low-molecular carbohydrates in algae. Structure of the glyceric acid mannoside from red algae. Acta Chem Scand 9:807–809

    Article  CAS  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    PubMed  CAS  Google Scholar 

  • Carreto L, Moore E, Nobre MF, Wait R, Riley PW, Sharp RJ, da Costa MS (1996) Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465

    Article  CAS  Google Scholar 

  • Chen MY, Wu SH, Lin GH, Lu CP, Lin YT, Chang WC, Tsay SS (2004) Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54:1849–1855

    Article  PubMed  CAS  Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  CAS  Google Scholar 

  • De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208

    PubMed  Google Scholar 

  • Degryse E, Glansdorff N, Pierard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196

    Article  PubMed  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  PubMed  CAS  Google Scholar 

  • Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9:199–206

    PubMed  CAS  Google Scholar 

  • Ferreira AC, Nobre MF, Moore E, Rainey FA, Battista JR, da Costa MS (1999) Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3:235–238

    Article  PubMed  CAS  Google Scholar 

  • Hoelzle I, Streeter JG (1990) Increased accumulation of trehalose in rhizobia cultured under 1% Oxygen. Appl Environ Microbiol 56:3213–3215

    PubMed  CAS  Google Scholar 

  • Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H (2000) Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 66:1974–1979

    Article  PubMed  CAS  Google Scholar 

  • Lamosa P, Gonçalves LG, Rodrigues MV, Martins LO, Raven NDH, Santos H (2006) Occurrence of 1-Glyceryl-1-myo-inosityl-phosphate in hyperthermophiles. Appl Environ Microbiol 72:6169–6173

    Article  PubMed  CAS  Google Scholar 

  • McBride MJ, JC Ensign (1987) Metabolism of endogenous trehalose by Streptomyces griseus spores and by spores or cells of other actinomycetes. J Bacteriol 169:5002–5007

    PubMed  CAS  Google Scholar 

  • Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407

    Article  PubMed  CAS  Google Scholar 

  • Roberts MF (2004) Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci 9:1999–2019

    Article  PubMed  CAS  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  PubMed  CAS  Google Scholar 

  • Shimakata T, Minatogawa Y (2000) Essential role of trehalose in the synthesis and subsequent metabolism of corynomycolic acid in Corynebacterium matruchotii. Arch Biochem Biophys 380:331–338

    Article  PubMed  CAS  Google Scholar 

  • Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Collins MD, Iijima E, Komagata K (1988) Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 52:33–40

    Article  CAS  Google Scholar 

  • Williams RAD, da Costa MS (1992) The genus Thermus and related microorganisms. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Heidelberg, pp 3745–3753

    Google Scholar 

  • Wolf A, Kramer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    Article  PubMed  CAS  Google Scholar 

  • Woodruff PJ, Carlson BL, Siridechadilok B, Pratt MR, Senaratne RH, Mougous JD, Riley LW, Williams SJ, Bertozzi CR (2004) Trehalose is required for growth of Mycobacterium smegmatis. J Biol Chem 279:28835–28843

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal, and FEDER, projects POCTI/BIO/42331/2001, POCI/BIA-MIC/56511/2004 and POCI/BIA-PRO/57263/2004. N. Empadinhas and P. Lamosa acknowledge scholarships from FCT (SFRH/BPD/14828/2003 and SFRH/BPD/26606/2006). We wish to thank Ana Coelho (Mass Spectrometry Service, ITQB, Oeiras) for performing the mass spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton S. da Costa.

Additional information

Communicated by G. Antranikian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Empadinhas, N., Mendes, V., Simões, C. et al. Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile. Extremophiles 11, 667–673 (2007). https://doi.org/10.1007/s00792-007-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0084-z

Keywords

Navigation