Skip to main content
Log in

Organic solutes in the deepest phylogenetic branches of the Bacteria: identification of α(1–6)glucosyl-α(1–2)glucosylglycerate in Persephonella marina

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The accumulation of organic solutes was investigated in the thermophilic bacteria Persephonella marina and Marinitoga piezophila, two representatives of the deepest lineages in the domain Bacteria. These organisms grow optimally at around 70 °C in medium containing 3 % NaCl. A new disaccharide, accumulating in Persephonella marina, was identified as α(1–6)glucosyl-α(1–2)glucosylglycerate (GGG), by nuclear magnetic resonance. This identification was validated by comparison with the spectra of the compound obtained by chemical synthesis. Besides GGG, the solute pool of Persephonella marina comprised β-glutamate, di-myo-inositol-1,3′-phosphate and 2-O-α-glucosylglycerate. In contrast, amino acids such as α-glutamate, proline and alanine were the dominant components of the solute pool of Marinitoga piezophila and sugar derivatives were absent. The ability of GGG to protect protein structure against heat denaturation was assessed using model proteins. A genomic search for the biosynthetic pathways of known ionic solutes in Aquificales and Thermotogales shows the inability of this analysis to predict the nature of compatible solutes and underlines the need for efficient cultivation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alain K, Marteinsson VT, Miroshnichenko ML, Bonch-Osmolovskaya EA, Prieur D, Birrien JL (2002) Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339

    Article  PubMed  CAS  Google Scholar 

  • Behrends V, Williams KJ, Jenkins VA, Robertson BD, Bundy JG (2012) Free glucosylglycerate is a novel marker of nitrogen stress in Mycobacterium smegmatis. J Proteome Res 11:3888–3896

    Article  PubMed  CAS  Google Scholar 

  • Borges N, Ramos A, Raven NDH, Sharp RJ, Santos H (2002) Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6:209–216

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brill J, Hoffmann T, Bleisteiner M, Bremer E (2011) Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. J Bacteriol 193:5335–5346

    Article  PubMed  CAS  Google Scholar 

  • Cánovas D, Borges N, Vargas C, Ventosa A, Nieto JJ, Santos H (1999) Role of Nγ-acetyldiaminobutyrate as an enzyme stabiliser and an intermediate in the biosynthesis of hydroxyectoine. Appl Environ Microbiol 65:3774–3779

    PubMed  Google Scholar 

  • Cario A, Jebbar M, Kervarec N, Oger P (2010) Influence of high hydrostatic pressure on the salt and heat stress response in the piezophilic archaeon Thermococcus barophilus. Book of Abstracts of Extremophiles P7:108

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Empadinhas N, Mendes V, Simoes C, Santos MS, Mingote A, Lamosa P, Santos H, da Costa MS (2007) Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol phosphate in a thermophile. Extremophiles 11:667–673

    Article  PubMed  CAS  Google Scholar 

  • Faria TQ, Lima JC, Bastos M, Macanita AL, Santos H (2004) Protein stabilization by osmolytes from hyperthermophiles: effect of mannosylglycerate on the thermal unfolding of recombinant nuclease a from Staphylococcus aureus studied by picosecond time-resolved fluorescence and calorimetry. J Biol Chem 279:48680–48691

    Article  PubMed  CAS  Google Scholar 

  • Faria TQ, Mingote A, Siopa F, Ventura R, Maycock C, Santos H (2008) Design of new enzyme stabilizers inspired by glycosides of hyperthermophilic microorganisms. Carbohydr Res 343:3025–3033

    Article  PubMed  CAS  Google Scholar 

  • Fernandes C, Empadinhas N, da Costa MS (2007) Single-step pathway for synthesis of glucosylglycerate in Persephonella marina. J Bacteriol 189:4014–4019

    Article  PubMed  CAS  Google Scholar 

  • Fernandes C, Mendes V, Costa J, Empadinhas N, Jorge C, Lamosa P, Santos H, da Costa MS (2010) Two alternative pathways for the synthesis of the rare compatible solute mannosylglucosylglycerate in Petrotoga mobilis. J Bacteriol 192:1624–1633

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves LG, Borges N, Serra F, Fernandes PL, Dopazo H, Santos H (2012) Evolution of the biosynthesis of di-myo-inositol phosphate, a marker of adaptation to hot marine environments. Environ Microbiol 14:691–701

    Article  PubMed  Google Scholar 

  • Götz D, Banta A, Beveridge TJ, Rushdi AI, Simoneit BR, Reysenbach AL (2002) Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359

    Article  PubMed  Google Scholar 

  • Goude R, Renaud S, Bonnassie S, Bernard T, Blanco C (2004) Glutamine, glutamate, and α-glucosylglycerate are the major osmotic solutes accumulated by Erwinia chrysanthemi starin 3937. Appl Environ Microbiol 70:6535–6541

    Article  PubMed  CAS  Google Scholar 

  • Hua SS, Tsai VY, Lichens GM, Noma AT (1982) Accumulation of amino acids in Rhizobium sp. Strain WR1001 in response to sodium chloride salinity. Appl Environ Microbiol 44:135–140

    PubMed  CAS  Google Scholar 

  • Jorge C, Lamosa P, Santos H (2007) α-d-Mannopyranosyl-(1,2)-α-d-glucopyranosyl-(1,2)glycerate in the thermophilic bacterium Petrotoga miotherma: structure, cellular content and function. FEBS J 274:3120–3127

    Article  PubMed  CAS  Google Scholar 

  • Klähn S, Steglich C, Hess WR, Hagemann M (2010) Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol 12:83–94

    Article  PubMed  Google Scholar 

  • Kollman VH, Hanner JL, London RE, Adame EG, Walker TE (1979) Photosynthetic preparation and characterization of 13C-labeled carbohydrates in Agmenellum quadruplicatum. Carbohydr Res 73:193–202

    Article  CAS  Google Scholar 

  • Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H (2000) Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 66:1974–1979

    Article  PubMed  CAS  Google Scholar 

  • Lamosa P, Gonçalves LG, Rodrigues M, Martins LO, Raven N, Santos H (2006) Occurrence of 1-glyceryl-1-myo-inosityl-phosphate in hyperthermophiles. Appl Environ Microbiol 72:6169–6173

    Article  PubMed  CAS  Google Scholar 

  • Lourenço EC, Maycock CD, Ventura MR (2009) Synthesis of potassium (2R)-2-O-α-d-glucopyranosyl-(1–>6)-alpha-d-glucopyranosyl-2,3-dihydroxypropanoate a natural compatible solute. Carbohydr Res 344:2073–2078

    Article  PubMed  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65:1815–1825

    PubMed  CAS  Google Scholar 

  • Martin DD, Bartlett DH, Roberts MF (2002) Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6:507–514

    Article  PubMed  CAS  Google Scholar 

  • Martins LO, Carreto LS, da Costa MS, Santos H (1996) New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 178:5644–5651

    PubMed  CAS  Google Scholar 

  • Martins LO, Huber R, Huber H, Stetter KO, da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902

    PubMed  CAS  Google Scholar 

  • Müller V, Spanheimer R, Santos H (2005) Stress response by solute accumulation in archaea. Curr Opin Microbiol 8:729–736

    Article  PubMed  Google Scholar 

  • Neves C, da Costa MS, Santos H (2005) Compatible solutes of the hyperthermophile Palaeococcus ferrophilus: osmoadaptation and thermoadaptation in the order thermococcales. Appl Environ Microbiol 71:8091–8098

    Article  PubMed  CAS  Google Scholar 

  • Nunes OC, Manaia CM, da Costa MS, Santos H (1995) Compatible solutes in thermophilic bacteria Rhodothermus marinus and Thermus thermophilus. Appl Environ Microbiol 61:2351–2357

    PubMed  CAS  Google Scholar 

  • Pospísl S, Halada P, Petrícek M, Sedmera P (2007) Glucosylglycerate is an osmotic solute and an extracellular metabolite produced by Streptomyces caelestis. Folia Microbiol (Praha) 52:451–456

    Article  Google Scholar 

  • Ramos A, Raven NDH, Sharp RJ, Bartolucci S, Rossi M, Cannio R, Lebbink J, van der Oost J, de Vos WM, Santos H (1997) Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl Environ Microbiol 63:4020–4025

    PubMed  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1:5

    Article  PubMed  Google Scholar 

  • Robertson DE, Roberts MF, Belay N, Stetter KO, Boone DR (1990) Occurrence of β-glutamate, a novel osmolyte, in marine methanogenic bacteria. Appl Environ Microbiol 56:1504–1508

    PubMed  CAS  Google Scholar 

  • Robertson DE, Noll D, Roberts MF (1992) Free amino acid dynamics in marine methanogens. J Biol Chem 267:14893–14901

    PubMed  CAS  Google Scholar 

  • Rodrigues MV, Borges N, Henriques M, Lamosa P, Ventura R, Fernandes C, Empadinhas N, Maycock C, da Costa MS, Santos H (2007) Bifunctional CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, the key enzyme for di-myo-inositol-phosphate synthesis in several (hyper)thermophiles. J Bacteriol 189:5405–5412

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues MV, Borges N, Almeida CP, Lamosa P, Santos H (2009) A unique beta-1,2-mannosyltransferase of Thermotoga maritima that uses di-myo-inositol phosphate as the mannosyl acceptor. J Bacteriol 191:6105–6115

    Article  PubMed  CAS  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  PubMed  CAS  Google Scholar 

  • Santos H, Lamosa P, Borges N (2006) Characterization and quantification of compatible solutes in (hyper)thermophilic microorganisms. Methods Microbiol 35:173–199

    Article  CAS  Google Scholar 

  • Santos H, Lamosa P, Faria TQ, Borges N, Neves C (2007) The physiological role, biosynthesis and mode of action of compatible solutes from (hyper)thermophiles. In: Gerday C, Glandorff N (eds) Physiology and biochemistry of extremophiles. ASM Publishers, Washington, DC, pp 86–103

    Google Scholar 

  • Santos H, Lamosa P, Borges N, Gonçalves LG, Pais T, Rodrigues MV (2011) Organic compatible solutes of prokaryotes that thrive in hot environments: the importance of ionic compounds for thermostabilization. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 497–520

    Chapter  Google Scholar 

  • Saum SH, Müller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189:6968–6975

    Article  PubMed  CAS  Google Scholar 

  • Saum R, Mingote A, Santos H, Müller V (2009) A novel limb in the osmoregulatory network of Methanosarcina mazei Gö1: N(epsilon)-acetyl-beta-lysine can be substituted by glutamate and alanine. Environ Microbiol 11:1056–1065

    Article  PubMed  CAS  Google Scholar 

  • Scholz S, Sonnenbichler J, Schäfer W, Hensel R (1992) Di-myo-inositol-1,1′-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett 306:239–242

    Article  PubMed  CAS  Google Scholar 

  • Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission, 6th Framework Programme contract COOP-CT-2003-508644, PRODEP and POCI, Portugal (PTDC/BIO/70806/2006) (POCI/V.5/A0004/2005). Technical assistance by Ana I Mingote is acknowledged. The NMR spectrometers are part of The National NMR Network (REDE/1517/RMN/2005), supported by “Programa Operacional Ciência e Inovação (POCTI) 2010” and Fundação para a Ciência e a Tecnologia (FCT). M.V.R. and L.G.G. received fellowships from FCT (SFRH/BPD/80219/2011 and SFRH/BPD/26905/2006). Data for the amino acid analysis was obtained by the Analytical Laboratory, Analytical Services Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Santos.

Additional information

Communicated by H. Atomi.

P. Lamosa and M. V. Rodrigues contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamosa, P., Rodrigues, M.V., Gonçalves, L.G. et al. Organic solutes in the deepest phylogenetic branches of the Bacteria: identification of α(1–6)glucosyl-α(1–2)glucosylglycerate in Persephonella marina . Extremophiles 17, 137–146 (2013). https://doi.org/10.1007/s00792-012-0500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0500-x

Keywords

Navigation