Skip to main content
Log in

Characterization of culturable Paenibacillus spp. from the snow surface on the high Antarctic Plateau (DOME C) and their dissemination in the Concordia research station

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Culturable psychrotolerant bacteria were isolated from the top snow on the high Antarctic Plateau surrounding the research station Concordia. A total of 80 isolates were recovered, by enrichment cultures, from two different isolation sites (a distant pristine site [75° S 123° E] and a site near the secondary runway of Concordia). All isolates were classified to the genus Paenibacillus by 16S rRNA gene phylogenetic analysis and belonged to two different species (based on threshold of 97 % similarity in 16S rRNA gene sequence). ERIC-PCR fingerprinting indicated that the isolates from the two different sites were not all clonal. All isolates grew well from 4 to 37 °C and were resistant to ampicillin and streptomycin. In addition, the isolates from the secondary runway were resistant to chromate and sensitive to chloramphenicol, contrary to those from the pristine site. The isolates were compared to 29 Paenibacillus isolates, which were previously recovered from inside the Concordia research station. One of these inside isolates showed ERIC- and REP-PCR fingerprinting profiles identical to those of the runway isolates and was the only inside isolate that was resistant to chromate and sensitive to chloramphenicol. The latter suggested that dissemination of culturable Paenibacillus strains between the harsh Antarctic environment and the inside of the Concordia research station occurred. In addition, inducible prophages, which are potentially involved in horizontal dissemination of genes, were detected in Paenibacillus isolates recovered from outside and inside the station. The highest lysogeny was observed in strains harvested from the hostile environment outside the station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anesio AM, Bellas CM (2011) Are low temperature habitats hot spots of microbial evolution driven by viruses? Trends Microbiol 19:52–57

    Article  PubMed  CAS  Google Scholar 

  • Antony R, Krishnan KP, Laluraj CM, Thamban M, Dhakephalkar PK, Engineer AS, Shivaji S (2012) Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core. Microbiol Res 167:372–380

    Article  PubMed  CAS  Google Scholar 

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260

    Article  PubMed  CAS  Google Scholar 

  • Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackebrandt E (2001) 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5:23–33

    Article  PubMed  CAS  Google Scholar 

  • Bruno WJ, Socci ND, Halpern AL (2000) Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 17:189–197

    Article  PubMed  CAS  Google Scholar 

  • Carlton GN (2003) Hexavalent chromium exposures during full-aircraft corrosion control. AIHA J (Fairfax, Va) 64:668–672

    CAS  Google Scholar 

  • Chown SL, Huiskes AH, Gremmen NJ, Lee JE, Terauds A, Crosbie K, Frenot Y, Hughes KA, Imura S, Kiefer K, Lebouvier M, Raymond B, Tsujimoto M, Ware C, Van de Vijver B, Bergstrom DM (2012) Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc Natl Acad Sci USA 109:4938

    Article  PubMed  CAS  Google Scholar 

  • Conley CA, Rummel JD (2010) Planetary protection for human exploration of Mars. Acta Astronaut 66:792–797

    Article  CAS  Google Scholar 

  • Cowan DA, Chown SL, Convey P, Tuffin M, Hughes K, Pointing S, Vincent WF (2011) Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol 19:540–548

    Article  PubMed  CAS  Google Scholar 

  • De Souza MJ, Nair S, Loka Bharathi PA, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 15:379–384

    Article  PubMed  Google Scholar 

  • Debus A (2006) The European standard on planetary protection requirements. Res Microbiol 157:13–18

    Article  PubMed  Google Scholar 

  • Deghorain M, Bobay LM, Smeesters PR, Bousbata S, Vermeersch M, Perez-Morga D, Dreze PA, Rocha EP, Touchon M, Van Melderen L (2012) Characterization of novel phages isolated in coagulase-negative staphylococci reveals evolutionary relationships with Staphylococcus aureus phages. J Bacteriol 194:5829–5839

    Article  PubMed  CAS  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  PubMed  CAS  Google Scholar 

  • LaPuma PT, Rhodes BS (2002) Chromate content versus particle size for aircraft paints. Regul Toxicol Pharmacol 36:318–324

    Article  PubMed  CAS  Google Scholar 

  • Lo Giudice A, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L (2012a) Marine bacterioplankton diversity and community composition in an antarctic coastal environment. Microb Ecol 63:210–223

    Article  PubMed  Google Scholar 

  • Lo Giudice A, Casella P, Bruni V, Michaud L (2012b) Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls. Ecotoxicology 22:240–250

    Article  PubMed  Google Scholar 

  • Logan NA, De Clerck E, Lebbe L, Verhelst A, Goris J, Forsyth G, Rodriguez-Diaz M, Heyndrickx M, De Vos P (2004) Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 54:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Lugg DJ (2005) Behavioral health in Antarctica: implications for long-duration space missions. Aviat Space Environ Med 76:B74–B77

    PubMed  Google Scholar 

  • Lugg D, Shepanek M (1999) Space analogue studies in Antarctica. Acta Astronaut 44:693–699

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Rosales C, Fullana N, Musto H, Castro-Sowinski S (2012) Antarctic DNA moving forward: genomic plasticity and biotechnological potential. FEMS Microbiol Lett 331:1–9

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Michaud L, Caruso C, Mangano S, Interdonato F, Bruni V, Lo Giudice A (2012) Predominance of Flavobacterium, Pseudomonas, and Polaromonas within the prokaryotic community of freshwater shallow lakes in the northern Victoria Land, East Antarctica. FEMS Microbiol Ecol 82:391–404

    Article  PubMed  CAS  Google Scholar 

  • Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510

    Article  PubMed  CAS  Google Scholar 

  • Montes MJ, Mercade E, Bozal N, Guinea J (2004) Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54:1521–1526

    Article  PubMed  CAS  Google Scholar 

  • Palinkas LA (2003) The psychology of isolated and confined environments. Understanding human behavior in Antarctica. Am Psychol 58:353–363

    Article  PubMed  Google Scholar 

  • Pavel AB, Vasile CI (2012) PyElph—a software tool for gel images analysis and phylogenetics. BMC Bioinformatics 13:9

    Article  PubMed  Google Scholar 

  • Pyne SJ (2007) The extraterrestrial Earth: Antarctica as analogue for space exploration. Space Policy 23:147–149

    Article  Google Scholar 

  • Rasimus S, Mikkola R, Andersson MA, Teplova VV, Venediktova N, Ek-Kommonen C, Salkinoja-Salonen M (2012) Psychrotolerant Paenibacillus tundrae isolates from barley grains produce new cereulide-like depsipeptides (paenilide and homopaenilide) that are highly toxic to mammalian cells. Appl Environ Microbiol 78:3732–3743

    Article  PubMed  CAS  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    PubMed  CAS  Google Scholar 

  • Rodriguez-Diaz M, Lebbe L, Rodelas B, Heyrman J, De Vos P, Logan NA (2005) Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island. Antarctica. Int J Syst Evol Microbiol 55:2093–2099

    Article  CAS  Google Scholar 

  • Russell NJ (2003) Psychrophily and resistance to low temperature. In: Gerday C, Glansdorff N (eds) Extremophiles (Life under extreme environmental Condition), Encyclopedia of Life Support Systems (EOLSS). Eolss Publishers, Oxford

    Google Scholar 

  • Sambrook J, Russell DW (2006) Purification of bacteriophage lambda particles by Isopycnic centrifugation through CsCl gradients. Cold Spring Harb Protocols, New York

    Google Scholar 

  • Sawstrom C, Pearce I, Davidson AT, Rosen P, Laybourn-Parry J (2008) Influence of environmental conditions, bacterial activity and viability on the viral component in 10 Antarctic lakes. FEMS Microbiol Ecol 63:12–22

    Article  PubMed  Google Scholar 

  • Stern A, Sorek R (2011) The phage-host arms race: shaping the evolution of microbes. BioEssays 33:43–51

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542

    Article  PubMed  CAS  Google Scholar 

  • Tindall BJ (2004) Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microb Ecol 47:271–283

    Article  PubMed  CAS  Google Scholar 

  • Van Houdt R, De Boever P, Coninx I, Le Calvez C, Dicasillati R, Mahillon J, Mergeay M, Leys N (2009) Evaluation of the airborne bacterial population in the periodically confined Antarctic base Concordia. Microb Ecol 57:640–648

    Article  PubMed  Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  PubMed  CAS  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385

    Article  Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank all of the staff at “Concordia” Station, for the logistic help and support, the “Institute Polaire Paul Emile Victor” (IPEV) and the Italian “Programma Nazionale di Richerche in Antartide” (PNRA) and the MNA (Museo Nazionale dell’Antartide), which made the expedition possible. This work was supported by the European Space Agency (ESA-PRODEX) and the Belgan Science Policy (Belspo) through the EXANAM project (C90359). LVM and MD thank Léna Demazy for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Van Houdt.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2013_539_MOESM1_ESM.pdf

Supplementary Fig. 1. Phylogenetic position of all isolates analyzed during this study among all Paenibacillus species type strains, based on 16S rRNA gene sequence analysis. Bootstrap branch confidence estimates are indicated. Supplementary material 1 (PDF 61 kb)

792_2013_539_MOESM2_ESM.docx

Supplementary Table 1. Phage content of the isolates recovered from outside and inside the Concordia station. Supplementary material 2 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Houdt, R., Deghorain, M., Vermeersch, M. et al. Characterization of culturable Paenibacillus spp. from the snow surface on the high Antarctic Plateau (DOME C) and their dissemination in the Concordia research station. Extremophiles 17, 565–573 (2013). https://doi.org/10.1007/s00792-013-0539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0539-3

Keywords

Navigation