Skip to main content

Advertisement

Log in

Evaluation of the Airborne Bacterial Population in the Periodically Confined Antarctic Base Concordia

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The environmental airborne bacterial population in relation to human confinement was investigated over a period of 1 year in the Concordia Research Station, which is located on the Eastern Antarctic plateau. The unique location of the station makes it suitable for different research domains such as glaciology, atmospheric sciences, astronomy, etc. Furthermore, it is used as a test bed for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. A total of 96 samples were collected at eight different locations in the station at regular intervals. The airborne bacterial contamination was for 90% of the samples lower than 10.0 × 102 colony-forming units per cubic meter of air (CFU/m3) and the total bacterial contamination increased over time during confinement but diminished after re-opening of the base. Viable airborne bacteria with different morphology were identified by biochemical analyses. The predominant microflora was identified as Staphylococcus sp. (24.9% of total) and Bacillus sp. (11.6% of total) and was associated with human activity, but also environmental species such as Sphingomonas paucimobilis (belonging to the α-Proteobacteria) could establish themselves in the airborne population. A few opportunistic pathogens (6%) were also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188

    Article  Google Scholar 

  2. Andersson AM, Weiss N, Rainey F, Salkinoja-Salonen MS (1999) Dust-borne bacteria in animal sheds, schools and children’s day care centres. J Appl Microbiol 86:622–634

    Article  PubMed  CAS  Google Scholar 

  3. ASHRAE (2007) Standard 62.1-2007—ventilation for acceptable indoor air quality. ASHRAE, Atlanta

    Google Scholar 

  4. ASHRAE (1984) Standard 55-1981—thermal environmental conditions for human occupancy. ASHRAE, Atlanta

    Google Scholar 

  5. Augustowska M, Dutkiewicz J (2006) Variability of airborne microflora in a hospital ward within a period of one year. Ann Agric Environ Med 13:99–106

    PubMed  Google Scholar 

  6. Barker J, Jones MV (2005) The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet. J Appl Microbiol 99:339–347

    Article  PubMed  CAS  Google Scholar 

  7. Beaugerie L, Petit JC (2004) Microbial–gut interactions in health and disease. Antibiotic-associated diarrhoea. Best Pract Res Clin Gastroenterol 18:337–352

    Article  PubMed  CAS  Google Scholar 

  8. Berg G (2000) Diversity of antifungal and plant-associated Serratia plymuthica strains. J Appl Microbiol 88:952–960

    Article  PubMed  CAS  Google Scholar 

  9. Bouillard L, Michel O, Dramaix M, Devleeschouwer M (2005) Bacterial contamination of indoor air, surfaces, and settled dust, and related dust endotoxin concentrations in healthy office buildings. Ann Agric Environ Med 12:187–192

    PubMed  Google Scholar 

  10. Bouillard LA, Devleeschouwer MJ, Michel O (2006) Characteristics of the home bacterial contamination and endotoxin related release. J Pharm Belg 61:63–66

    PubMed  CAS  Google Scholar 

  11. Brief RS, Bernath T (1988) Indoor pollution: guidelines for prevention and control of microbiological respiratory hazards associated with air conditioning and ventilation system. Appl Ind Hyg 3:5–10

    CAS  Google Scholar 

  12. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

    Article  PubMed  CAS  Google Scholar 

  13. Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL (2004) Microbial characterization during the early habitation of the International Space Station. Microb Ecol 47:119–126

    Article  PubMed  CAS  Google Scholar 

  14. Chi MC, Li CS (2006) Analysis of bioaerosols from chicken houses by culture and non-culture method. Aerosol Sci Technol 40:1071–1079

    Article  CAS  Google Scholar 

  15. Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 6:170–174

    Article  PubMed  CAS  Google Scholar 

  16. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Article  Google Scholar 

  17. Cox CS (1995) Stability of airborne microbes and allergens. In: Cox CS, Wathes CM (eds) Bioaerosols handbook. CRC, Boca Raton, pp 77–99

    Google Scholar 

  18. Dacarro C, Picco AM, Grisoli P, Rodolfi M (2003) Determination of aerial microbiological contamination in scholastic sports environments. J Appl Microbiol 95:904–912

    Article  PubMed  CAS  Google Scholar 

  19. Frank DN, Spiegelman GB, Davis W, Wagner E, Lyons E, Pace NR (2003) Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J Clin Microbiol 41:295–303

    Article  PubMed  CAS  Google Scholar 

  20. Gorny RL, Dutkiewicz J (2002) Bacterial and fungal aerosols in indoor environment in Central and Eastern European countries. Ann Agric Environ Med 9:17–23

    PubMed  Google Scholar 

  21. Hsueh PR, Teng LJ, Yang PC, Chen YC, Pan HJ, Ho SW, Luh KT (1998) Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics. Clin Infect Dis 26:676–681

    Article  PubMed  CAS  Google Scholar 

  22. Li CS, Lin YC (2001) Storage effects on bacterial concentration: determination of impinger and filter samples. Sci Total Environ 278:231–237

    Article  PubMed  CAS  Google Scholar 

  23. Lugg DJ (2005) Behavioral health in Antarctica: implications for long-duration space missions. Aviat Space Environ Med 76:B74–B77

    PubMed  Google Scholar 

  24. Metha SK, Bell-Robinson DM, Groves TO, Stetzenbach LD, Pierson DL (2000) Evaluation of portable air samplers for monitoring airborne culturable bacteria. AIHAJ 61:850–854

    Article  Google Scholar 

  25. Morawska L (2006) Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 16:335–347

    Article  PubMed  CAS  Google Scholar 

  26. Myers DN, Stoeckel DM, Bushon RN, Francy DS, Brady AMG (2007) U.S. Geological Survey, variously dated, Biological indicators: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A7, accessed 26 March 2008, from http://pubs.water.usgs.gov/twri9A/

  27. Novikova N, De Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the International Space Station. Res Microbiol 157:5–12

    Article  PubMed  Google Scholar 

  28. Novikova ND (2004) Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol 47:127–132

    Article  PubMed  CAS  Google Scholar 

  29. Ofungwu J (2005) Indoor air quality investigation and health risk assessment at correctional institutions. Integr Environ Assess Manag 1:135–141

    Article  PubMed  CAS  Google Scholar 

  30. Palinkas LA (2003) The psychology of isolated and confined environments. Understanding human behavior in Antarctica. Am Psychol 58:353–363

    Article  PubMed  Google Scholar 

  31. Sessa R, Di PM, Schiavoni G, Santino I, Altieri A, Pinelli S, Del PM (2002) Microbiological indoor air quality in healthy buildings. New Microbiol 25:51–56

    PubMed  CAS  Google Scholar 

  32. Stuster J (2005) Analogue prototypes for Lunar and Mars exploration. Aviat Space Environ Med 76:B78–B83

    PubMed  Google Scholar 

  33. Szczerba I (2003) Occurrence and number of bacteria from the Micrococcus, Kocuria, Nesterenkonia, Kytococcus and Dermacoccus genera on skin and mucous membranes in humans. Med Dosw Mikrobiol 55:67–74

    PubMed  Google Scholar 

  34. Van Houdt R, Givskov M, Michiels CW (2007) Quorum sensing in Serratia. FEMS Microbiol Rev 31:407–424

    Article  PubMed  Google Scholar 

  35. Viktorov AN, Novikova ND, Polikarpov NA, Gorshkova VP, Konstantinova SV (1995) Current problems of microbial safety of the interior environment of orbital stations after extended period of operation. Aviakosm Ekolog Med 29:51–55

    PubMed  CAS  Google Scholar 

  36. Walter AD, Mertsch O, Koehler C, Adamzig H, Hausdorf L, Klocke M, Froehling A, Klocke S, Schlueter O, Schondelmaier D, Loechel B (2007) Contamination control of agricultural products by on-chip PCR and flow cytometry. 12th International Commercialization of Micro and Nano Systems Conference, Melbourne, Australia

  37. Yao M, Mainelis G (2007) Analysis of portable impactor performance for enumeration of viable bioaerosols. J Occup Environ Hyg 4:514–524

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the MISSEX project (PRODEX agreements no. C90254). We are grateful to the MISSEX partners and to C. Lasseur, C. Paillé, and B. Lamaze from ESTEC/ESA for their constant support and advice; and to IPEV and PNRA for logistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Van Houdt.

Additional information

Rob Van Houdt and Patrick De Boever contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Houdt, R., De Boever, P., Coninx, I. et al. Evaluation of the Airborne Bacterial Population in the Periodically Confined Antarctic Base Concordia. Microb Ecol 57, 640–648 (2009). https://doi.org/10.1007/s00248-008-9462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9462-z

Keywords

Navigation