Skip to main content
Log in

Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters

  • Original Paper
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In the wake of the findings that Antarctic krills concentrate heavy metals at ppm level, (Yamamoto et al. 1987), the Antarctic waters from the Indian side were examined for the incidence of metal and antibiotic-resistant bacteria during the austral summer (13th Indian Antarctic expedition) along the cruise track extending from 50° S and 18° E to 65° S and 30° E. The bacterial isolates from these waters showed varying degrees of resistance to antibiotics (Chloramphenicol, ampicillin, streptomycin, tetracycline and kanamycin) and metals (K2CrO4, CdCl2, ZnCl2 and HgCl2) tested. Of the isolates screened, about 29% and 16% were resistant to 100 ppm of cadmium and chromium salt respectively. Tolerance to lower concentration (10 ppm) of mercury (Hg) was observed in 68% of the isolates. Depending on the antibiotics the isolates showed different percentage of resistance. Multiple drug and metal-resistance were observed. High incidence of resistance to both antibiotics and metals were common among the pigmented bacterial isolates. Increased resistance decreased the ability of bacteria to express enzymes. The results reiterate previous findings by other researchers that the waters of southern ocean may not be exempt from the spread of metal and antibiotic-resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barbieri P, Galassi G, Galli E (1989) Plasmid-encoded mercury resistance in a Pseudomonas stutzeri strain that degrades o-xylene. FEMS Microbiol Ecol 20:185–194

    Google Scholar 

  • Barbieri P, Bestetti G, Reniero D, Galli E (1996) Mercury resistance in aromatic compound degrading Pseudomonas strains. FEMS Microbiol Ecol 20:185–194

    Article  CAS  Google Scholar 

  • Barkay T, Olson BH (1986) Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl Environ Microbiol 63:4267–4271

    Google Scholar 

  • Beja O, Koonin EV, Aravind L, Taylor LT, Seitz H, Stein JL, Bensen DC, Feldman RA, Swanson RV, DeLong EF (2002) Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl Environ Microbiol 68:335–345

    Article  CAS  Google Scholar 

  • Bonner WN (1984) Conservation and the Antarctic. In: Laws RM (eds) Antarctic ecology, vol 2. Academic Press, London, pp 821–850

  • Brynhildsen L, Lundgren BV, Allard B, Rosswall T (1988) Effects of glucose concentrations on cadmium, copper, mercury and zinc toxicity to a Klebsiella sp. Appl Environ Microb 54:1689–1691

    CAS  Google Scholar 

  • Canstein VH, Li Y, Timmis KN, Deckwer WD, Wagner-Dobler I (1999) Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl Environ Microbiol 65:5279–5284

    Google Scholar 

  • Chandy JP (1999) Heavy metal tolerance in chromogenic and non-chromogenic marine bacteria from Arabian Gulf. Environ Monitor assess 59:321–330

    Article  CAS  Google Scholar 

  • Chan KY, Dean ACR (1988) Effects of cadmium and lead on growth, respiration and enzyme activity of the marine bacterium Pseudomonas marina. Chemosphere 17:597–607

    Article  CAS  Google Scholar 

  • De J, Ramaiah N, Mesquita A, Verlekar XN (2003) Tolerance to various toxicants by marine bacteria highly resistant to mercury. Mar Biotechnol 5:185–193

    Article  CAS  Google Scholar 

  • Duxbury T (1986) Microbes and heavy metals: An ecological overview. Microbiology Science 3:330–333

    CAS  Google Scholar 

  • Forstner U, Wittmann GTW (1979) Metal Pollution in the aquatic environment. Springer Verlag, New York, N.Y

    Google Scholar 

  • Guhathakurta H, Kaviraj A (2000) Heavy metal concentration in water, sediment, shrimp (Penaeus monodon) and mullet (Liza parsia) in some brackish water ponds of Sunderban, India. Mar Pollut Bull 40:914–920

    Article  CAS  Google Scholar 

  • Hermansson M, Jones GW, Kjelleberg S (1987) Frequency of antibiotic and heavy metal resistance, pigmentation and plasmids in bacteria of marine air-water interface. Appl Environ Microbiol 53:2338–2342

    CAS  Google Scholar 

  • Hideomi N, Ishikawa T, Yasunaga S, Kondo I, Mitsuhasi S (1977) Frequency of heavy-metal resistance in bacteria from inpatients in Japan. Nature 266:165–167

    Article  Google Scholar 

  • Hoppe HG, Giesenhagen HC, Gocke K (1998) Changing patterns of bacterial substrate decomposition in a eutrophication gradient. Aquat Microb Ecol 15:1–13

    Article  Google Scholar 

  • Kobori H, Taga N (1978) Phosphatase activity and its role in the mineralization of organic phosphorus in coastal seawater. J Exp Mar Ecol 36:23–39

    Article  Google Scholar 

  • Kobori H, Sullivan CW, Shizuya H (1984) Bacterial plasmids in Antarctic natural microbial assemblages. Appl Environ Microbiol 48:515–518

    CAS  Google Scholar 

  • Krishnamurti AJ, Nair VR (1999) Concentration of metals in shrimps and crabs from Thane- Bassein creek system Maharashtra. Ind J Mar Sc 28:92–95

    Google Scholar 

  • Loka Bharathi PA, Nair S, De Souza M-JBD, Chandramohan D (2001) Assessment of viability in the bacterial standing stock of the Antarctic sea from the Indian side. Oceanologica Acta 24:577–580

    Article  Google Scholar 

  • Mudryk Z, Donderski W, Skorczewski P, Walczak M (2000) Effect of some heavy metals on neustonic and planktonic bacteria isolated from the deep of Gdansk. Oceanol Stud 29:89–99

    CAS  Google Scholar 

  • Muller KA, Rasmussen LD, Sorensen SJ (2001) Adaptation of the bacteria community to mercury contamination. FEMS Microbiol Lett 204:49–53

    Article  CAS  Google Scholar 

  • Nair S, Chandramohan D, Loka Bharathi PA (1992) Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics. Wat Res 26:431–434

    Article  CAS  Google Scholar 

  • Nair S, Loka Bharathi PA, Chandramohan D (1993) Effect of Heavy metals on Bacillus sp. & Flavobacterium sp.. Ecotoxicology 2:220–229

    Article  CAS  Google Scholar 

  • Nygaerd T, Lie E, Roev N, Steinnes E (2001) Metal Dynamics in an Antarctic Food Chain. Mar-Pollut-Bull 42:598–602

    Article  Google Scholar 

  • Oliver JD, Smith JF (1982) Intestinal microflora of Deep Sea Animal: A Taxonomic Study. Deep Sea Res 29:785–794

    Article  Google Scholar 

  • Petri G, Zauke G-P (1993) Trace metals in crustaceans in the Antarctic Ocean. Ambio 22:529–536

    Google Scholar 

  • Qiu JW, Qian PY, Wang WX (2001) Contribution of dietary bacteria to metal accumulation in the slipper limpet. Aquat-Microbial-Ecol 25:151–161

    Article  Google Scholar 

  • Ramaiah N, De J (2003) Unusual rise in mercury-resistant bacteria in coastal environs. Microb Ecol 45:444–454

    Article  CAS  Google Scholar 

  • Rasmussen LD, Sorensen SJ (1998) The effect of long-term exposure to mercury on the bacteria community in the marine sediment. Curr Microbiol 36:291–297

    Article  CAS  Google Scholar 

  • Rasmussen LD, Sorensen SJ (2001) Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiol Ecol 36:1–9

    Article  CAS  Google Scholar 

  • Sabry SA, Ghozlan HA, Abou-Zeid DM (1997) Metal tolerance and antibiotic resisitance patterns of a bacterial population isolated from sea water. J Appl Microbiol 82:245–252

    CAS  Google Scholar 

  • Shiratori T, Inoue C, Sugawara K, Kusano T, Kitagawa Y (1989) Cloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli. J Bacteriol 171:3458–3464

    CAS  Google Scholar 

  • Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for microbiology, Washington DC, pp, 524

    Google Scholar 

  • Smith JJ, Howington JP, McFeters GA (1993) Plasmid maintenance and expression in Escherichia coli exposed to the Antarctic marine environment. Antart-J-U.S. 28:123–124

    Google Scholar 

  • Sobecky PA (1999) Plasmid ecology of marine sediment microbial communities. Hydrobiologia 401:9–18

    Article  CAS  Google Scholar 

  • Traxler RW, Wood EM (1981) Multiple metal tolerance of bacterial isolates. In: Underkofler LA, Wulf ML (eds) Developments in industrial microbiology, vol 22 Flagstaff, AZ (USA) 1980, pp 521–528

  • Yamamoto Y, Honda K, Tatsukawa R (1987) Heavy metal accumulation in Antarctic krill Euphausia superba. Proc-Nipr-Symp-Polar-Biol Natl-Inst-of-Polar-Research-Tokyo-Japan 1:198–204

    Google Scholar 

  • Zemelman R, Silva J, Herriques M (1980) Antibiotic resistant bacteria in seawater from Concepcion Bay. Archs Biol Exp 13:121

    Google Scholar 

Download references

Acknowledgements

PAL thanks the leader and members of the 13th Antarctic expedition for all the help rendered in sample collection. Authors express their thanks to the anonymous referees for their valuable comments, which has improved the manuscript NIO no. 4122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Judith De Souza.

Additional information

Special Issue on Biomarkers of Marine Pollution and Bioremediation

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Souza, MJ., Nair, S., Loka Bharathi, P.A. et al. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 15, 379–384 (2006). https://doi.org/10.1007/s10646-006-0068-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-006-0068-2

Keywords

Navigation