Skip to main content
Log in

Low-Temperature Molecular Motions in Phospholipid Bilayers in Presence of Glycerol as Studied by Spin-Echo EPR of Spin Labels

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Glycerol is used as a cryoprotective agent to protect biological systems under freezing conditions. Electron spin echo (ESE) spectroscopy, a pulsed version of EPR, is capable of studying low-temperature molecular motions of nitroxide spin labels. ESE technique was applied to study molecular motions in phospholipid bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with added spin-labeled lipids 1-palmitoyl-2-stearoyl-(n-DOXYL)-sn-glycero-3-phosphocholine (n-PCSL, n was optionally 5 or 16). Bilayers were hydrated (solvated) either in pure water or in a 1:1 v/v water–glycerol mixture. In the used ESE approach, there were studied stochastic (or diffusive) orientational vibrations of the molecule as a whole (i.e., stochastic molecular librations). The anisotropic contribution to the echo decay rate, W anis, was measured, which is proportional, according to theory, to the product of the mean-squared angular amplitude \(\langle \alpha^{ 2} \rangle\) and the correlation time τ c. W anis was found to be small below and to sharply increase above 200 K, for the both types of solvents and the both label positions. As compared with hydration by pure water, in presence of glycerol W anis was larger for the 5th label position while for the 16th one it did not change. Also, for the 5th label position W anis values were found to be nearly the same as those for a polar spin probe 3,4-dicarboxy-PROXYL which was separately added to the bilayer as a reference and which is assumed to be partitioned only into the solvating shell. These results indicate that motions at the surface of bilayer are governed by the motion of solvating shell while motions in the bilayer interior occur independently. The relation of the obtained data with the dynamical transition phenomenon that is known for biological substances near 200 K from neutron scattering and Mössbauer absorption is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P. Westh, Biophys. J. 84, 341 (2003)

    Article  Google Scholar 

  2. A. Nowacka, S. Douezan, L. Wadsö, D. Topgaard, E. Sparr, Soft Matter 8, 1482 (2012)

    Article  ADS  Google Scholar 

  3. M. Akhoondi, H. Oldenhof, H. Sieme, W.F. Wolkers, Mol. Membr. Biol. 29, 197 (2012)

    Article  Google Scholar 

  4. Kyrychenko, T.S. Dyubko, Biophys. Chem. 136, 23 (2008)

    Article  Google Scholar 

  5. J.J. Towey, L. Dougan, J. Phys. Chem. B 116, 1633 (2012)

    Article  Google Scholar 

  6. P.H. Yancey, M.E. Clark, S.C. Hand, R.D. Bowlus, G.N. Somero, Science 217, 1214 (1982)

    Article  ADS  Google Scholar 

  7. P.W. Hochachka, G.N. Somero, Biochemical Adaptation (Princeton University Press, Princeton, 1984)

    Google Scholar 

  8. K.B. Storey, J.M. Storey, Comp. Biochem. Physiol. 83, 613 (1986)

    Article  Google Scholar 

  9. T.J. Anchordoguy, A.S. Rudolph, J.F. Carpenter, J.H. Crowe, Cryobiology 24, 324 (1987)

    Article  Google Scholar 

  10. A.K. Fry, A.Z. Higgins, Cell. Mol. Bioeng. 5, 287 (2012)

    Article  Google Scholar 

  11. J.G. Duman, D.W. Wu, L. Xu, D. Tursman, T.M. Olsen, Quart. Rev. Biol. 66, 387 (1991)

    Article  Google Scholar 

  12. V.G. Sakai, F. Engelmann, Cryoletters 28, 151 (2007)

    Google Scholar 

  13. J.P. Acker, J.A.W. Elliott, L.E. McGann, Biophys. J. 81, 1389 (2001)

    Article  Google Scholar 

  14. P.R. Davis-Searles, A.J. Saunders, D.A. Erie, D.J. Winzor, G.J. Pielak, Annu. Rev. Biophys. Biomol. Struct. 30, 271–306 (2001)

    Article  Google Scholar 

  15. F. Parak, E. Frolov, A. Kononenko, R. Mössbauer, V. Goldanskii, A. Rubin, FEBS Lett. 117, 368 (1980)

    Article  Google Scholar 

  16. H. Keller, P. Debrunner, Phys. Rev. Lett. 45, 68 (1980)

    Article  ADS  Google Scholar 

  17. E.R. Bauminger, S.G. Cohen, I. Nowik, S. Ofer, I. Yariv, Proc. Natl. Acad. Sci. USA 80, 736 (1983)

    Article  ADS  Google Scholar 

  18. W. Doster, S. Cusack, W. Petry, Nature (London) 337, 754 (1989)

    Article  ADS  Google Scholar 

  19. W. Doster, Biochim. Biophys. Acta 1804, 3 (2010)

    Article  Google Scholar 

  20. E. Cornicchi, G. Onori, A. Paciaroni, Phys. Rev. Lett. 95, 1581041–1581044 (2005)

    Article  Google Scholar 

  21. K. Wood, A. Frolich, A. Paciaroni, M. Moulin, M. Hartlein, G. Zaccai, D.J. Tobias, M. Weik, J. Am. Chem. Soc. 130, 4586 (2008)

    Article  Google Scholar 

  22. S. Khodadadi, S. Pawlus, J.H. Roh, V.G. Sakai, E. Mamontov, A.P. Sokolov, J. Chem. Phys. 128, 195106 (2008)

    Article  ADS  Google Scholar 

  23. K.L. Ngai, S. Capaccioli, A. Paciaroni, J. Chem. Phys. 138, 235102 (2013)

    Article  ADS  Google Scholar 

  24. E. Cornicchi, S. Capponi, M. Marconi, G. Onori, A. Paciaroni, Eur. Biophys. J. 37, 583–590 (2008)

    Article  Google Scholar 

  25. J.H. Roh, R.M. Briber, A. Damjanovic, D. Thirumalai, S.A. Woodson, A.P. Sokolov, Biophys. J. 96, 2755 (2009)

    Article  Google Scholar 

  26. N.V. Surovtsev, V.K. Malinovsky, E.V. Boldyreva, J. Chem. Phys. 134, 045102 (2011)

    Article  ADS  Google Scholar 

  27. R.E. Lechner, J. Fitter, N.A. Dencher, T. Hauss, J. Mol. Biol. 277, 593 (1998)

    Article  Google Scholar 

  28. J. Fitter, R.E. Lechner, N.A. Dencher, J. Phys. Chem. 103, 8036 (1999)

    Article  Google Scholar 

  29. K. Wood, M. Plazanet, F. Gabel, B. Kessler, D. Oesterhelt, G. Zaccai, M. Weik, Eur. Biophys. J. 37, 619 (2008)

    Article  Google Scholar 

  30. F. Natali, A. Relini, A. Gliozzi, R. Rolandi, P. Cavatorta, A. Deriu, A. Fasano, P. Riccio, Chem. Phys. 292, 455–464 (2003)

    Article  ADS  Google Scholar 

  31. T.E. Dirama, G.A. Carri, A.P. Sokolov, J. Chem. Phys. 122, 244910–244911 (2005)

    Article  ADS  Google Scholar 

  32. M. Tsai, D.A. Neumann, L.N. Bell, Biophys. J. 79, 2728–2732 (2000)

    Article  Google Scholar 

  33. N.V. Surovtsev, E.S. Salnikov, V.K. Malinovsky, L.L. Sveshnikova, S.A. Dzuba, J. Phys. Chem. B 112, 12361 (2008)

    Article  Google Scholar 

  34. N.V. Surovtsev, S.A. Dzuba, J. Chem. Phys. 140, 235103 (2014)

    Article  ADS  Google Scholar 

  35. N.V. Surovtsev, N.V. Ivanisenko, K.Yu. Kirillov, S.A. Dzuba, J. Phys. Chem. B 116, 8139 (2012)

    Article  Google Scholar 

  36. I.V. Borovykh, P. Gast, S.A. Dzuba, Appl. Magn. Reson. 31, 159–166 (2007)

    Article  Google Scholar 

  37. R. Guzzi, M. Babavali, R. Bartucci, L. Sportelli, M. Esmann, D. Marsh, Biochim. Biophys. Acta 1808, 1618–1628 (2011)

    Article  Google Scholar 

  38. R. Guzzi, R. Bartucci, L. Sportelli, M. Esmann, D. Marsh, Biochem. 48, 8343–8354 (2009)

    Article  Google Scholar 

  39. F. Scarpelli, R. Bartucci, L. Sportelli, R. Guzzi, Eur. Biophys. J. 40, 273–279 (2011)

    Article  Google Scholar 

  40. D. Marsh, R. Bartucci, R. Guzzi, L. Sportelli, M. Esmann, 1834, 1591–1595 (2013)

  41. G. Romeo, Appl. Phys. A 106, 893–900 (2012)

    Article  ADS  Google Scholar 

  42. F. Varga, E. Migliardo, B. Takacs, S. Vertessy, Magazù, M. T. F. Telling, J. Biol. Phys. 36, 207–220 (2010)

    Article  Google Scholar 

  43. S.A. Dzuba, Spectrochim. Acta Part A 56, 227–234 (2000)

    Article  ADS  Google Scholar 

  44. E.P. Kirilina, S.A. Dzuba, A.G. Maryasov, Yu.D. Tsvetkov, Appl. Magn. Reson. 21, 203–221 (2001)

    Article  Google Scholar 

  45. S.A. Dzuba, E.P. Kirilina, E.S. Salnikov, J. Chem. Phys. 125, 054502 (2006)

    Article  ADS  Google Scholar 

  46. N.V. Ivanisenko, S.A. Dzuba, Appl. Magn. Reson. 44, 883–891 (2013)

    Article  Google Scholar 

  47. R. Guzzi, M. Babavali, R. Bartucci, L. Sportelli, M. Esmann, D. Marsh, Biochim. Biophys. Acta 1808, 1618–1628 (2011)

    Article  Google Scholar 

  48. K.B. Konov, N.P. Isaev, S.A. Dzuba, Mol. Phys. 111, 2882–2886 (2013)

    Article  ADS  Google Scholar 

  49. D. Marsh, Appl. Magn. Reson. 37, 435–454 (2010)

    Google Scholar 

  50. N.P. Isaev, V.N. Syryamina, S.A. Dzuba, J. Phys. Chem. B 114, 9510–9515 (2010)

    Article  Google Scholar 

  51. J. Wolfe, G. Bryant, K. Koster, CryoLetters 23, 157–166 (2002)

    Google Scholar 

  52. K. Ueda, H. S. Tseng, Y. Kaminoh, S.M. Ma, H. Kamaya, S. H. Lin. Mol. Pharmacol. 29, 582–588 (1986)

    MathSciNet  Google Scholar 

  53. D.-K. Lee, B.S. Kwon, A. Ramamoorthy, Langmuir 24, 13598–13604 (2008)

    Article  Google Scholar 

  54. C.-H. Hsieh, W.-G. Wu, Biophys. J. 71, 3278–3287 (1996)

    Article  Google Scholar 

  55. S.V. Paschenko, Yu.V. Toropov, S.A. Dzuba, Yu.D. Tsvetkov, A.Kh. Vorobiev, J. Chem. Phys. 110, 8150–8154 (1999)

    Article  ADS  Google Scholar 

  56. L.V. Kulik, L.L. Rapatsky, A.V. Pivtsov, N.V. Surovtsev, S.V. Adichtchev, I.A. Grigor’ev, S.A. Dzuba, J. Chem. Phys. 131, 064505 (2009)

    Article  ADS  Google Scholar 

  57. D.A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S.A. Dzuba, L. Sportelli, Biophys. J. 87, 3873–3881 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project no. 12-03-00192-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Dzuba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konov, K.B., Isaev, N.P. & Dzuba, S.A. Low-Temperature Molecular Motions in Phospholipid Bilayers in Presence of Glycerol as Studied by Spin-Echo EPR of Spin Labels. Appl Magn Reson 45, 1117–1126 (2014). https://doi.org/10.1007/s00723-014-0603-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0603-x

Keywords

Navigation