Skip to main content
Log in

Librational dynamics of nitroxide molecules in a molecular glass studied by echo-detected EPR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Nitroxides 2,2,6,6-tetramethyl-4-piperidone N-oxide (tempone), 3-carboxy-proxyl and potassium peroxylamine disulfonate (Fremy salt) in glycerol solution were studied in a wide temperature range near the glass transition temperatureT g. The echo-detected (ED) electron paramagnetic resonance (EPR) lineshape reveals strong dependence on the time interval τ between the echo-forming microwave pulses which is readily explained by anisotropic phase relaxation. Employing a librational model of molecular motion and the Redfield relaxation theory, spectra were simulated for the τ’s varying in a large interval. The anisotropic relaxation rate increases with temperature increase and it is larger for nitroxide with a larger molecular size. The mean-squared amplitude of motion, obtained from reduced hyperfine splitting in continuous-wave EPR, near Tg linearly depends on temperature which is characteristic of harmonic solids. For tempone in a host crystal 2,2,4,4-tetramethyl-cyclobutan-1, 3-dione the anisotropic spin relaxation rate decreases with temperature increase so the found feature solely belongs to a glassy state. A new approach is proposed for modeling slow wobbling motion in a restricted angular space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima S., Novikov V.N., Kodama M.: J. Chem. Phys.113, 6344 (2000)

    Article  ADS  Google Scholar 

  2. Johari G.P., Goldstein M.: J. Chem. Phys.53, 2372 (1970)

    Article  ADS  Google Scholar 

  3. Johari J.P.: Ann. N.Y. Acad. Sci.279, 117 (1976)

    Article  ADS  Google Scholar 

  4. Blochowicz T., Kudlik A., Benkhof S., Senker J., Rössler E., Hinze G.: J. Chem. Phys.110, 12011 (1999)

    Article  ADS  Google Scholar 

  5. Vogel M., Rössler E.: J. Chem. Phys.114, 5802 (2001)

    Article  ADS  Google Scholar 

  6. Dzuba S.A., Tsvetkov Yu.D., Maryasov A.G.: Chem. Phys. Lett.188, 217 (1992)

    Article  ADS  Google Scholar 

  7. Konda R., Du J.L., Eaton S.S., Eaton G.R.: Appl. Magn. Reson.7, 185 (1994)

    Article  Google Scholar 

  8. Dzuba S.A.: Phys. Lett. A213, 77 (1996)

    Article  ADS  Google Scholar 

  9. Rohrer M., Gast P., Möbius K., Prisner T.F.: Chem. Phys. Lett.259, 523 (1996)

    Article  ADS  Google Scholar 

  10. Paschenko S.V., Toropov Yu.V., Dzuba S.A., Tsvetkov Yu.D., Vorobiev A.Kh.: J. Chem. Phys.110, 8150–8154 (1999)

    Article  ADS  Google Scholar 

  11. Dubinskii A.A., Maresh G.G., Veber M., Spiess H.W.: Chem. Phys. Lett.193, 134 (1992)

    Article  ADS  Google Scholar 

  12. Dubinskii A.A., Maresh G.G., Spiess H.W.: J. Chem. Phys.100, 2473 (1994)

    Article  Google Scholar 

  13. Saalmueller J.W., Long H.W., Maresh G.G., Spiess H.W.: J. Magn. Reson. A117, 193–208 (1995)

    Article  Google Scholar 

  14. Dzuba S.A., Maryasov A.G., Salikhov K.M., Tsvetkov Yu.D.: J. Magn. Reson.58, 95 (1984)

    Google Scholar 

  15. Dzuba S.A., Tsvetkov Yu.D.: J. Struct. Chem.28, 343 (1987)

    Article  Google Scholar 

  16. Millhauser G.L., Freed J.H.: J. Chem. Phys.81, 37 (1984)

    Article  ADS  Google Scholar 

  17. Saxena S., Freed J.H.: J. Phys. Chem.101, 7998 (1997)

    Google Scholar 

  18. Van S.P., Birrell G.B., Griffith O.H.: J. Magn. Reson.15, 444 (1974)

    Google Scholar 

  19. Slichter C.P.: Principles of Magnetic Resonance. Berlin: Springer 1996.

    Google Scholar 

  20. Abragam A.: The Principles of Nuclear Magnetism. Oxford: Clarendon Press 1961.

    Google Scholar 

  21. Barbon A., Brustolon M., Maniero A.L., Romanelli M., Brunei L.-C.: Phys. Chem. Chem. Phys.1, 4015 (1999)

    Article  Google Scholar 

  22. Toropov Yu.V., Dzuba S.A., Tsvetkov Yu.D., Monaco V., Formaggio F., Crisma M., Toniolo C., Raap J.: Appl. Magn. Reson.15, 237–246 (1998)

    Google Scholar 

  23. Goldman S.A., Bruno G.V., Polnaszek C.F., Freed J.G.: J. Chem. Phys.56, 716 (1972)

    Article  ADS  Google Scholar 

  24. Szabo A.J.: Chem. Phys.81, 150–167 (1984)

    ADS  Google Scholar 

  25. Usha M.G., Peticolas W.L., Wittebort R.J.: Biochemistry30, 3955–3962 (1991)

    Article  Google Scholar 

  26. Tokmakoff A., Fayer M.D.: J. Chem. Phys.103, 2810 (1995)

    Article  ADS  Google Scholar 

  27. Shushakov O.A., Dzuba S.A., Tsvetkov Yu.D.: Khim. Fiz.3, 1705 (1984)

    Google Scholar 

  28. Abramowitz M., Stegun I. (eds.): Handbook of Mathematical Functions, chap. 12. Washington, D.C.: U.S. Government Printing Office 1964.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirilina, E.P., Dzuba, S.A., Maryasov, A.G. et al. Librational dynamics of nitroxide molecules in a molecular glass studied by echo-detected EPR. Appl. Magn. Reson. 21, 203–221 (2001). https://doi.org/10.1007/BF03162452

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162452

Keywords

Navigation