Skip to main content
Log in

Low-Temperature Dynamical Transition in Lipid Bilayers Detected by Spin-Label ESE Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Data on neutron scattering in biological systems show low-temperature dynamical transition between 170 and 230 K manifesting itself as a drastic increase of the atomic mean-squared displacement, 〈x2〉, detected for hydrogen atoms in the nano- to picosecond time scale. For spin-labeled systems, electron spin echo (ESE) spectroscopy—a pulsed version of electron paramagnetic resonance—is also capable of detection of dynamical transition. A two-pulse ESE decay in frozen matrixes is induced by spin relaxation arising from stochastic molecular librations, and allows to obtain the 〈α2τc parameter, where 〈α2〉 is a mean-squared angular amplitude of the motion and τc is the correlation time lying in the sub- and nanosecond time ranges. In this work, the ESE technique was applied to spin-labeled amphiphilic molecules of three different kinds embedded in bilayers of fully saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and mono-unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Two-pulse ESE data revealed the appearance of stochastic librations above 130 K, with the parameter 〈α2τc obeying the Arrhenius type of temperature dependence and increasing remarkably above 170–180 K. A comparison with a dry sample suggests that onset of motions is not related with lipid internal motions. Three-pulse ESE experiments (resulting in stimulated echos) in DPPC bilayers showed the appearance of slow molecular rotations above 170–180 K. For D2O-hydrated bilayers, ESE envelope modulation experiments indicate that isotropic water molecular motions in the nearest hydration shell of the bilayer appear with a rate of ~ 105 s−1 in the narrow temperature range between 175 and 179 K. The similarity of the experimental data found for three different spin-labeled compounds suggests a cooperative character for the ESE-detected molecular motions. The data were interpreted within a model suggesting that dynamical transition is related with overcoming barriers, of 10–20 kJ/mol height, existing in the system for the molecular reorientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.G. Parak, Curr. Opin. Struct. Biol. 13, 552–557 (2003)

    Article  Google Scholar 

  2. W. Doster, Biochim. Biophys. Acta Proteins Proteom. 1804, 3–14 (2010)

    Article  Google Scholar 

  3. S. Khodadadi, A.P. Sokolov, Soft Matter 11, 4984–4998 (2015)

    Article  ADS  Google Scholar 

  4. G. Schiró, Biophys. Chem. 180–181, 29–36 (2013)

    Article  Google Scholar 

  5. J.H. Roh, V.N. Novikov, R.B. Gregory, J.E. Curtis, Z. Chowdhuri, A.P. Sokolov, Phys. Rev. Lett. 95, 038101 (2005)

    Article  ADS  Google Scholar 

  6. S.B. Kim, D.R. Gupta, P.G. Debenedetti, Sci. Rep. 6, 25612 (2016)

    Article  ADS  Google Scholar 

  7. N.V. Surovtsev, V.K. Malinovsky, E.V. Boldyreva, J. Chem. Phys. 134, 045102 (2011)

    Article  ADS  Google Scholar 

  8. J.H. Roh, R.M. Briber, A. Damjanovic, D. Thirumalai, S.A. Woodson, A.P. Sokolov, Biophys. J. 96, 2755–2762 (2009)

    Article  ADS  Google Scholar 

  9. J. Fitter, R.E. Lechner, N.A. Dencher, J. Phys. Chem. 103, 8036–8050 (1999)

    Article  Google Scholar 

  10. K. Wood, M. Plazanet, F. Gabel, B. Kessler, D. Oesterhelt, G. Zaccai, M. Weik, Eur. Biophys. J. 37, 619–626 (2008)

    Article  Google Scholar 

  11. D.J. Tobias, N. Sengupta, M. Tarek, Faraday Discuss. 141, 99–116 (2009)

    Article  ADS  Google Scholar 

  12. A. Frölich, F. Gabel, M. Jasnin, U. Lehnert, D. Oesterhelt, A. Stadler, M. Tehei, M. Weik, K. Wood, G. Zaccai, Faraday Discuss. 141, 117–130 (2009)

    Article  ADS  Google Scholar 

  13. J. Peters, J. Marion, F. Natali, E. Kats, D.J. Bicout, J. Phys. Chem. B 121, 6860–6868 (2017)

    Article  Google Scholar 

  14. A. Tölle, Rep. Prog. Phys. 64, 1473–1532 (2001)

    Article  ADS  Google Scholar 

  15. M. Plazanet, H. Schober, Phys. Chem. Chem. Phys. 10, 5723–5729 (2008)

    Article  Google Scholar 

  16. E. Mamontov, V.K. Sharma, J.M. Borreguero, M. Tyagi, J. Phys. Chem. B 120, 3232–3239 (2016)

    Article  Google Scholar 

  17. S.-H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, E. Mamontov, Proc. Natl. Acad. Sci. USA. 103, 9012–9016 (2006)

    Article  ADS  Google Scholar 

  18. J.H. Freed, G.K. Fraenkel, J. Chem. Phys. 39, 326–349 (1963)

    Article  ADS  Google Scholar 

  19. J.H. Freed, G.V. Bruno, C.F. Polnaszek, J. Phys. Chem. 75, 3385–3399 (1971)

    Article  Google Scholar 

  20. S. Saxena, J.H. Freed, J. Phys. Chem. A 101, 7998–8008 (1997)

    Article  Google Scholar 

  21. J.H. Freed, Annu. Rev. Phys. Chem. 51, 655–689 (2000)

    Article  ADS  Google Scholar 

  22. Y. Polyhach, E. Bordignon, G. Jeschke, Phys. Chem. Chem. Phys. 13, 2356–2366 (2011)

    Article  Google Scholar 

  23. D. Marsh, Appl. Magn. Reson. 49, 97–106 (2018)

    Article  Google Scholar 

  24. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)

    Google Scholar 

  25. S.A. Dzuba, E.P. Kirilina, E.S. Salnikov, J. Chem. Phys. 125, 054502 (2006)

    Article  ADS  Google Scholar 

  26. S.A. Dzuba, E.S. Salnikov, L.V. Kulik, Appl. Magn. Reson. 30, 637–650 (2006)

    Article  Google Scholar 

  27. R. Guzzi, R. Bartucci, M. Esmann, D. Marsh, Biophys. J. 108, 2825–2832 (2015)

    Article  ADS  Google Scholar 

  28. E. Aloi, M. Oranges, R. Guzzi, R. Bartucci, J. Phys. Chem. B 121, 9239–9246 (2017)

    Article  Google Scholar 

  29. E.A. Golysheva, G.Yu. Shevelev, S.A. Dzuba, J. Chem. Phys. 147, 064501 (2017)

    Article  ADS  Google Scholar 

  30. R. Bartucci, R. Guzzi, M. De Zotti, C. Toniolo, L. Sportelli, D. Marsh, Biophys. J. 94, 2698–2705 (2008)

    Article  Google Scholar 

  31. I.V. Borovykh, P. Gast, S.A. Dzuba, Appl. Magn. Reson. 31, 159–166 (2007)

    Article  Google Scholar 

  32. E.P. Kirilina, S.A. Dzuba, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 21, 203–221 (2001)

    Article  Google Scholar 

  33. D.A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S.A. Dzuba, L. Sportelli, Biophys. J. 87, 3873–3881 (2004)

    Article  Google Scholar 

  34. N.P. Isaev, S.A. Dzuba, J. Phys. Chem. B 112, 13285–13291 (2008)

    Article  Google Scholar 

  35. S.A. Dzuba, E.P. Kirilina, E.S. Salnikov, L.V. Kulik, J. Chem. Phys. 122, 094702–094707 (2005)

    Article  ADS  Google Scholar 

  36. V.N. Syryamina, A.G. Maryasov, M.K. Bowman, S.A. Dzuba, J. Magn. Reson. 261, 169–174 (2015)

    Article  ADS  Google Scholar 

  37. V.N. Syryamina, S.A. Dzuba, J. Phys. Chem. B 121, 1026–1032 (2017)

    Article  Google Scholar 

  38. N.V. Surovtsev, S.A. Dzuba, J. Phys. Chem. B 113, 15558–15562 (2009)

    Article  Google Scholar 

  39. N.V. Surovtsev, N.V. Ivanisenko, KYu. Kirillov, S.A. Dzuba, J. Phys. Chem. B 116, 8139–8144 (2012)

    Article  Google Scholar 

  40. C. Toniolo, M. Crisma, F. Formaggio, Biopolymers 47, 153–158 (1998)

    Article  Google Scholar 

  41. E.S. Salnikov, D.A. Erilov, A.D. Milov, Y.D. Tsvetkov, C. Peggion, F. Formaggio, C. Toniolo, J. Raap, S.A. Dzuba, Biophys. J. 91, 1532–1540 (2006)

    Article  ADS  Google Scholar 

  42. V. Monaco, F. Formaggio, M. Crisma, C. Toniolo, P. Hanson, G. Millhauser, C. George, J.R. Deschamps, J.L. Flippen-Anderson, Bioorg. Med. Chem. 7, 119–131 (1991)

    Article  Google Scholar 

  43. D.A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S.A. Dzuba, L. Sportelli, J. Phys. Chem. B 108, 4501–4507 (2004)

    Article  Google Scholar 

  44. E.P. Kirilina, T.F. Prisner, M. Bennati, B. Endeward, S.A. Dzuba, M.R. Fuchs, K. Möbius, A. Schnegg, Magn. Reson. Chem. 43, S119–S129 (2005)

    Article  Google Scholar 

  45. N.P. Isaev, M.V. Fedin, S.A. Dzuba, Appl. Magn. Reson. 44, 133–142 (2013)

    Article  Google Scholar 

  46. K.B. Konov, N.P. Isaev, S.A. Dzuba, J. Phys. Chem. B 118, 12478–12485 (2014)

    Article  Google Scholar 

  47. A.D. Milov, R.I. Samoilova, A.A. Shubin, Y.A. Grishin, S.A. Dzuba, Appl. Magn. Reson. 35, 73–94 (2008)

    Article  Google Scholar 

  48. L. Hong, N. Smolin, B. Lindner, A.P. Sokolov, J.C. Smith, Phys. Rev. Lett. 107, 148102 (2011)

    Article  ADS  Google Scholar 

  49. L. Hong, D.C. Glass, J.D. Nickels, S. Perticaroli, Z. Yi, M. Tyagi, H. O’Neill, Q. Zhang, A.P. Sokolov, J.C. Smith, Phys. Rev. Lett. 110, 028104 (2013). (Erratum Phys. Rev. Lett. 110, 069901)

    Article  ADS  Google Scholar 

  50. I.H. Roh, J.E. Curtis, S. Azzam, V.N. Novikov, I. Peral, Z. Chowdhuri, R.B. Gregory, A.P. Sokolov, Biophys. J. 91, 2573–2588 (2006)

    Article  ADS  Google Scholar 

  51. A. Benedetto, Biophys. Chem. 182, 16–22 (2013)

    Article  Google Scholar 

  52. E. Mamontov, H. O’Neill, Q. Zhang, J. Biol. Phys. 36, 291–297 (2010)

    Article  Google Scholar 

  53. N.P. Isaev, L.V. Kulik, I.A. Kirilyuk, V.A. Reznikov, I.A. Grigor’ev, S.A. Dzuba, J. Non Cryst. Solids 356, 1037–1042 (2010)

    Article  ADS  Google Scholar 

  54. D. Laage, T. Elsaesser, J.T. Hynes, Chem. Rev. 117, 10694–10725 (2017)

    Article  Google Scholar 

  55. E. Mamontov, X.-Q. Chu, Phys. Chem. Chem. Phys. 14, 11573–11588 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, Project # 18-43-540004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Dzuba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golysheva, E.A., De Zotti, M., Toniolo, C. et al. Low-Temperature Dynamical Transition in Lipid Bilayers Detected by Spin-Label ESE Spectroscopy. Appl Magn Reson 49, 1369–1383 (2018). https://doi.org/10.1007/s00723-018-1066-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1066-2

Navigation