Skip to main content
Log in

Ubiquitous distribution of helmchrome in phototactic swarmers of the stramenopiles

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Most swarmers (swimming cells) of the stramenopile group, ranging from unicellular protist to giant kelps (brown algae), have two heterogeneous flagella: a long anterior flagellum (AF) and a relatively shorter posterior flagellum (PF). These flagellated cells often exhibit phototaxis upon light stimulation, although the mechanism by which how the phototactic response is regulated remains largely unknown. A flavoprotein concentrating at the paraflagellar body (PFB) on the basal part of the PF, which can emit green autofluorescence under blue light irradiance, has been proposed as a possible blue light photoreceptor for brown algal phototaxis although the nature of the flavoprotein still remains elusive. Recently, we identified helmchrome as a PF-specific flavoprotein protein in a LC-MS/MS-based proteomics study of brown algal flagella (Fu et al. 2014). To verify the conservation of helmchrome, in the present study, the absence or presence and the localization of helmchrome in swarmers of various algal species were investigated. The results showed that helmchrome was only detected in phototactic swarmers but not the non-phototactic ones of the stramenopile group. Electron microscopy further revealed that the helmchrome detectable swarmers bear a conserved PFB-eyespot complex, which may serve as structural basis for light sensing. It is speculated that all three conserved properties: helmchrome, the PFB structure, and the eyespot apparatus, will be essential parts for phototaxis of stramenopile swarmers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUREO:

Aureochrome

bZIP:

Basic leucine zipper

ChR:

Channelrhodopsin

DAPI:

4′,6-Diamidino-2-phenylindole

HELMC:

Helmchrome

LOV:

Light-oxygen-voltage sensing

PAC:

Photoactivated adenylyl cyclase

PAS:

Per-ARNT-Sim

PFB:

Paraflagellar body

PHOT:

Phototropin

PHY:

Phytochrome

RGS:

Regulator of G protein signaling

VVD:

Vivid

WC:

White collar

ZnF:

Zinc finger

References

  • Amon JP, French KH (2004) Photoresponses of the marine protist Ulkenia sp. zoospores to ambient, artificial and bioluminescent light. Mycologia 96:463–469

    Article  PubMed  Google Scholar 

  • Amon JP, Perkins FO (1968) Structure of Labyrinthula sp. zoospores. J Eukaryotic Microbiol 15:543–546

    Google Scholar 

  • Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barsanti L, Passarelli V, Walne PL, Gualtieri P (1997) In vivo photocycle of the Euglena gracilis photoreceptor. Biophys J 72:545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthold P, Tsunoda SP, Emst OP, Mages W, Gradmann D, Hegemann P (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunelle SA, Hazard ES, Sotka EE, Dolah FMV (2007) Characterization of a dinoflagellate cryptochrome blue-light receptor with a possible role in circadian control of the cell cycle. J Phycol 43:509–518

    Article  Google Scholar 

  • Cheng P, He QY, Yang YH, Wang LX, Liu Y (2003a) Functional conservation of light, oxygen, or voltage domains in light sensing. Proc Natl Acad Sci U S A 100:5938–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng P, Yang YH, Wang LX, Q H, Liu Y (2003b) White collar-1, a multifunctional Neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2. J Biol Chem 6:3801–3808

    Article  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  CAS  PubMed  Google Scholar 

  • Cho HY, Tseng TS, Kaiserl E, Sullivan S, Christie JM, Briggs WR (2007) Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis. Plant Physiol 143:517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzlas G, Anthouard V, Artiguenave F, Aury JM, Badger JH et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW (1988) The autofluorescent flagellum: a new phylogenetic enigma. J Phycol 24:118–120

    Article  Google Scholar 

  • Crosson S, Moffat K (2001) Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc Natl Acad Sci U S A 98:2995–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosson S, Rajagopal S, Moffat K (2003) The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42:2–10

    Article  CAS  PubMed  Google Scholar 

  • Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763–769

    Article  CAS  PubMed  Google Scholar 

  • Deng YY, Yao JT, Fu G, Guo H, Duan DL (2014) Isolation, expression, and characterization of blue light receptor aureochrome gene from Saccharina japonica (Laminariales, Phaeophyceae). Mar Biotechnol 16:135–143

    Article  CAS  PubMed  Google Scholar 

  • Dodge JD (1984) The functional and phylogenetic significance of dinoflagellate eyespots. Biosystems 16:259–267

    Article  CAS  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) The pfam protein families database. Nucleic Acids Res 42:d222–d230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Moya A, Posudin YI, Fernández JA, Figueroa FL, Kawai H (2002) Photomovement of the swarmers of the brown algae Scytosiphon lomentaria and Petalonia fascia: effect of photon irradiance, spectral composition and UV dose. J Photochem Photobiol B 66:134–140

    Article  CAS  PubMed  Google Scholar 

  • Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–759

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Nagasato C, Ito T, Müller DG, Motomura T (2013) Ultrastructural analysis of flagellar development in plurilocular sporangia of Ectocarpus siliculosus (Phaeophyceae). Protoplasma 250:261–272

    Article  PubMed  Google Scholar 

  • Fu G, Nagasato C, Oka S, Cock JM, Motomura T (2014) Proteomics analysis of heterogeneous flagella in brown algae (Stramenopiles). Protist 165:662–675

    Article  CAS  PubMed  Google Scholar 

  • Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189

    Article  CAS  PubMed  Google Scholar 

  • Hegemann P, Fuhrmann M, Kateriya S (2001) Algal sensory photoreceptors. J Phycol 37:668–676

    Article  CAS  Google Scholar 

  • Heintzen C, Loros JJ, Dunlap JC (2001) The PAS protein vivid defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–464

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi T, Kawai H, Kubota M, Takahashi T, Watanabe M (1999) Phototactic responses of four marine dinoflagellates with different types of eyespot and chloroplast. Phycol Res 47:101–107

    Article  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123

    Article  CAS  PubMed  Google Scholar 

  • Huysman MJ, Fortunato AE, Matthijs M, Costa BS, Vanderhaeghen R, den DH V, Sachse M, Inzé D, Bowler C, Kroth PG, Wilhelm C, Falciatore A, Vyverman W, De Veylder L (2013) Aureochrome1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). Plant Cell 25:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyams JS (1982) The Euglena paraflagellar rod: structure, relationship to other flagellar components and preliminary biochemical characterization. J Cell Sci 55:199–210

    CAS  PubMed  Google Scholar 

  • Idei M, Osada K, Sato S, Nakayama T, Nagumo T, Mann DG (2013) Sperm ultrastructure in the diatoms Melosira and Thalassiosira and the significance of the 9 + 0 configuration. Protoplasma 250:833–850

    Article  CAS  PubMed  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Takahashi F, Nozaki Y, Nagasato C, Motomura T, Kataoka H (2009) Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes. Planta 230:543–552

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Song YH, Imaizumi T (2012) LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant 5:573–582

    Article  PubMed  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66

    Article  CAS  PubMed  Google Scholar 

  • Kawai H, Maeba S, Sasaki H, Okuda K, Henry EC (2003) Schizocladia ischiensis: a new filamentous marine chromophyte belonging to a new class, schizocladiophyceae. Protist 154:211–228

    Article  CAS  PubMed  Google Scholar 

  • Kawai H (1988) A flavin-like autofluorescent substance in the posterior flagellum of golden and brown algae. J Phycol 24:114–117

    Article  Google Scholar 

  • Kawai H (1992) Green flagellar autofluorencence in brown algal swarmers and their phototactic responses. Bot Mag Tokyo 105:171–184

    Article  Google Scholar 

  • Kawai H, Inouye I (1989) Flagellar autofluorescence in forty-four chlorophyll c-containing algae. Phycologia 28:222–227

    Article  Google Scholar 

  • Kawai H, Kubota M, Kondo T, Watanabe M (1991) Action spectra for phototaxis in zoospores of the brown alga Pseudochorda gracilis. Protoplasma 161:17–22

    Article  Google Scholar 

  • Kawai H, Müller DG, Fölster E, Häder D-P (1990) Phototactic responses in the gametes of the brown alga, Ectocarpus siliculosus. Planta 182:292–297

    Article  CAS  PubMed  Google Scholar 

  • Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26

    Article  CAS  PubMed  Google Scholar 

  • Kivic PA, Vesk M (1972) Structure and function in the euglenoid eyespot apparatus: the fine structure, and response to environmental changes. Planta 105:1–14

    Article  CAS  PubMed  Google Scholar 

  • Krauss U, Minh BQ, Losi A, Gärtner W, Eggert T, von Haeseler A, Jaeger KE (2009) Distribution and phylogeny of light-oxygen-voltage-blue-light-signaling proteins in the three kingdoms of life. J Bacteriol 191:7234–7242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreimer G, Kawai H, Müller DG, Melkonian M (1991) Reflective properties of the stigma in male gametes of Ectocarpus siliculosus (Phaeophyceae) studied by confocal laser scanning microscopy. J Phycol 27:268–276

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2747–2948

    Article  Google Scholar 

  • Lebert M (2001) Phototaxis of Euglena gracilis—flavins and pterins. In: Häder D-P, Lebert M (eds) Photomovements. Elsevier Science B. V, Amsterdam, pp 297–341

    Chapter  Google Scholar 

  • Liu SM, Häder D-P (1994) Isolation and characterization of proteins from the putative photoreceptor for positive phototaxis in the dinoflagellate, Peridinium gatunense Nygaard. Photochem Photobiol 59:86–90

    Article  CAS  Google Scholar 

  • Liu SM, Häder D-P, Ullrich W (1990) Photoorientation in the freshwater dinoflagellate, Peridinium gatunense Nygaard. FEMS Microbiol Lett 73:91–101

    Article  Google Scholar 

  • Losi A, Gärtner W (2012) The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol 63:49–72

    Article  CAS  PubMed  Google Scholar 

  • Lokhorst GM, Star W (2003) The flagellar apparatus in Tribonema (Xanthophyceae) reinvestigated. Phycologia 42:31–43

    Article  Google Scholar 

  • Maier I (1997a) The fine structure of the male gamete of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae). I. General structure of the cell. Eur J Phycol 32:241–253

    Article  Google Scholar 

  • Maier I (1997b) The fine structure of the male gamete of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae). II. The flagellar apparatus. Eur J Phycol 32:255–266

    Article  Google Scholar 

  • Matsunaga S, Uchida H, Iseki M, Watanabe M, Murakami A (2010) Flagellar motions in phototactic steering in a brown algal swarmer. Photochem Photobiol 86:374–381

    Article  CAS  PubMed  Google Scholar 

  • Moestrup O (1982) Flagellar structure in algae: a review, with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae, and Reckertia. Phycologia 21:427–528

    Article  Google Scholar 

  • Motomura T (1994) Electron and immunofluorescence microscopy on the fertilization of Fucus distichus (Fucales, Phaeophyceae). Protoplasma 178:97–110

    Article  Google Scholar 

  • Motomura T, Sakai Y (1981) Effect of chelated iron in culture media on oogenesis in Laminaria angustata. Bull Jpn Soc Sci Fish 47:1535–1540

    Article  CAS  Google Scholar 

  • Müller DG, Gassmann G, Lüning K (1979) Isolation of a spermatozoid-releasing and attracting substance from female gametophytes of Laminaria digitata. Nature 279:430–431

    Article  PubMed  Google Scholar 

  • Müller DG, Maier I, Müller H (1987) Flagellum autofluorescence and photoaccumulation in heterokont algae. Photochem Photobiol 46:1003–1008

    Article  Google Scholar 

  • Nagasato C, Motomura T (2002) Ultrastructural study on mitosis and cytokinesis in Scytosiphon lomentaria zygotes (Scytosiphonales, Phaeophyceae) by freeze-substitution. Protoplasma 219:140–149

    Article  CAS  PubMed  Google Scholar 

  • Nagasato C, Motomura T, Ichimura T (2001) Degeneration and extrusion of nuclei during oogenesis in Silvetia babingtonii, Cystoseira hakodatensis and Sargassum confusum (Fucales, Phaeophyceae). Pycologia 40:411–420

    Article  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh KC, Lagarias JC, Wada M (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci U S A 95:15826–15830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn M, Weber K (1982) Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. In: Wilson L (ed) Methods in Cell Biology. Academic Press, New York, pp 97–132

    Google Scholar 

  • Pecora RA, Rhodes RG (1973) Zoospore production in selected xanthophycean algae. Br Phycol J 8:321–324

    Article  Google Scholar 

  • Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H (2006) Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 28:197–202

    Article  CAS  PubMed  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (Eds) Culture and Collection of Algae, Proc US - Japan Conf, Hakone, Jan Soc Plant Physiol, pp 63–75

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 3:813–825

    Google Scholar 

  • Saranak J, Foster KW (1997) Rhodopsin guides fungal phototaxis. Nature 387:465–466

    Article  CAS  PubMed  Google Scholar 

  • Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada M (2005) A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci U S A 102:13705–13709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Mirura K, Fuzuzawa H, Nakamura S, Takahashi T (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Yamagata D, Ishikawa M, Fukamatsu Y, Ogura Y, Kasahara M, Kiyosue T, Kikuyama M, Wada M, Kataoka H (2007) Aureochrome, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci U S A 104:19625–19630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6:molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker CA, Van West P (2007) Zoospore development in the oomycetes. Fungal Biol Rev 21:10–18

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Hidetoshi Okuyama, Faculty of Environmental Earth Science, Hokkaido University, for kindly providing the Thraustochytrid-like 12B strain. We also thank Dr. J. Mark Cock, University Pierre et Marie Curie and Centre National de la Recherche Scientifique, France, who kindly gave us many valuable comments and corrected our English.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taizo Motomura.

Additional information

Handling Editor: Tsuneyoshi Kuroiwa

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(PDF 65 kb).

Supplementary Fig. S1

Immunofluorescence microscopy images of 25 swarmers investigated. Images of α-tubulin (red), helmchrome (green), and merged with DAPI (blue) are shown for each sample. The cells are orientated with the AF extending upwards and the PF extending opposite. a Female gamete of Scytosiphon lomentaria. b Female gamete of Culteria cylindrica. c Zoospores of Desmarestia ligulata. d Sperm of Silvetia babingtonii. e Zoospore of Chorda filum. f Zoospore of Saccharina angustata. g Zoospore of Undaria pinnatifida. h Zoospore of Alaria crassifolia. i Zoospore of Agarum clathratum. j Dinobryon sertularia. k Dinobryon sociale. l Zoospore of Thraustochytrid-like 12B. m Zoospore of Sicyoidochytrium sp. n Zoospore of Ulkenia amoeboidea. o Zoospore of Parietichytrium sp. p HG193 Symbiodinium sp. q HG243 Symbiodinium sp. r HG241 Bysmatrum sp. s TM106 Gymnodinium sp. t Male gamete of Ulva pertusa. u Female gamete of Ulva pertusa. v Female gamete of Bryopsis plumosa. w Chrysochromulina hirta. Scale bars, 5 μm. (GIF 266 kb).

High resolution image (EPS 31304 kb).

Supplementary Fig. S2

Electron microscopy image of a Ulva pertusa gamete. Note the association of eyespot and flagella is different from that of phototactic brown algal swarmers. Ch, chloroplast; Es, eyespot; F, flagellum; M, mitochondria. Scale bar, 500 nm. (GIF 95 kb).

High resolution image (EPS 7075 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, G., Nagasato, C., Yamagishi, T. et al. Ubiquitous distribution of helmchrome in phototactic swarmers of the stramenopiles. Protoplasma 253, 929–941 (2016). https://doi.org/10.1007/s00709-015-0857-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0857-7

Keywords

Navigation