Skip to main content

Advertisement

Log in

The impact of recent colonization on the genetic diversity and fine-scale genetic structure in Orchis militaris (L.)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Many terrestrial orchid species have undergone a serious decline in their ranges in Estonia and in other countries, mainly due to land-use changes. Some species have found a suitable habitat in anthropogenically disturbed areas, such as abandoned quarries and gravel pits. Using AFLP, we studied genetic variation and its structuring on a fine scale in three recently established and three old populations of Orchis militaris (L.) in Estonia. Our aims were to determine whether the colonization process resulted in a decline of genetic variation due to a created bottleneck or an increased spatial structuring due to seedling establishment around maternal plants. To evaluate plant reproductive success, the fruit set and the proportion of seeds containing embryos were measured. Our results revealed that O. militaris maintained high levels of genetic variation in recently colonized areas, even outside of the main distribution area, with a limited number of potential source populations. Similarly, no differences in reproductive success were observed between old and recently established populations. The extent of fine-scale genetic structure showed substantial variation: significant spatial structure was detected in all of the recently established populations and in one mature mainland population, whereas very weak genetic structuring on a fine scale was detected in two old populations in the main distribution area. Our results suggest that the conservation of recently established populations in anthropogenic areas should be considered in addition to the protection of indigenous calcareous grasslands to prevent the further decline of this species in Estonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexandersson R, Ågren J (2000) Genetic structure in the nonrewarding, bumblebee-pollinated orchid Calypso bulbosa. Heredity 85:401–409

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, London

    Google Scholar 

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Article  Google Scholar 

  • Austerlitz F, Mariette S, Machon N, Gouyon P-H, Godelle B (2000) Effects of colonization process on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung MY, Epperson BK, Chung MG (2003) Genetic structure of age classes in Camellia japonica (Theaceae). Evolution 57:62–73

    Article  PubMed  Google Scholar 

  • Chung MY, Nason JD, Chung MG (2005) Spatial genetic structure in populations of the terrestrial orchid Orchis cyclochila (Orchidaceae). Pl Syst Evol 254:209–219

    Article  Google Scholar 

  • Chung MY, Nason JD, Chung MG (2007) Effects of population succession on demographic and genetic processes: predictions and tests in the daylily Hemerocallis thunbergii (Liliaceae). Molec Ecol 16:2816–2829

    Article  Google Scholar 

  • Chung MY, Nason JD, Chung MG (2011) Significant demographic and fine-scale genetic structure in expanding and senescing populations of the terrestrial orchid Cymbidium goeringii (Orchidaceae). Amer J Bot 98:2027–2039

    Article  Google Scholar 

  • Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dittbrenner A, Hensen I, Wesche K (2005) Genetic structure and random amplified polymorphic DNA diversity of the rapidly declinig Angelica palustris (Apiaceae) in Eastern Germany in relation to population size and seed production. Pl Spec Biol 20:191–200

    Article  Google Scholar 

  • Doligez A, Baril C, Joly HI (1998) Fine-scale spatial genetic structure with nonuniform distribution of individuals. Genetics 148:905–919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species` geographical ranges: the central-marginal hypothesis and beyond. Molec Ecol 17:1170–1188

    Article  CAS  Google Scholar 

  • Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Ennos RA (2001) Inferences about spatial processes in plant populations from the analysis of molecular markers. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. British Ecological Society Blackwell Science, Oxford

    Google Scholar 

  • Epperson BK, Allard RW (1989) Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121:369–377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Escudero A, Iriondo JM, Torres ME (2003) Spatial analysis of genetic diversity as a tool for plant conservation. Biol Conservation 113:351–365

    Article  Google Scholar 

  • Esfeld K, Hensen I, Wesche K, Jakob S, Tischew S, Blattner FR (2008) Molecular data indicate independent colonizations of former lignite mining areas in Eastern Germany by Epipactis palustris (Orchidaceae). Biodivers & Conservation 17:2441–2453

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molec Ecol Res 10:564–567

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farrell L (1985) Biological flora of the British Isles. J Ecol 73:1041–1053

    Article  Google Scholar 

  • Fenster CB (1991) Gene flow in Chamaecrista fasciculata (Leguminosae). I. Gene dispersal. Evolution 45:398–409

    Article  Google Scholar 

  • Ferdy J-B, Loriot S, Sandmeier M, Lefranc M, Raquin C (2001) Inbreeding depression in a rare deceptive orchid. Canad J Bot 79:1181–1188

    Article  Google Scholar 

  • Fischer M, Matthies D (1998) RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Amer J Bot 85:811–819

    Article  CAS  Google Scholar 

  • Grant CD, Koch J (2003) Orchid species succession in rehabilitated bauxite mines in Western Australia. Austral J Bot 51:453–457

    Article  Google Scholar 

  • Green EC, Tremetsberger K, Jiménez A, Gómez-González S, Stuessy TF, Baeza CM, López PG (2012) Genetic diversity of pioneer populations: the case of Nassauvia argentea (Asteraceae: Mutisieae) on Volcán Lonquimay, Chile. Pl Syst Evol 298:109–119

    Article  Google Scholar 

  • Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Rhodes OE, Chesser RK, Smith MH (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago

    Google Scholar 

  • Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Molec Ecol 12:1577–1588

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molec Ecol Notes 2:618

    Article  Google Scholar 

  • Helsen K, Jacquemyn H, Hermy M, Vandepitte K, Honnay O (2013) Rapid buildup of genetic diversity in founder populations of the gynodioecious plant species Origanum vulgare after semi-natural grassland restoration. PLoS ONE 8(6):e67255. doi:10.1371/journal.pone.0067255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingsworth PM, Dickson JH (1997) Genetic variation in rural and urban populations of Epipactis helleborine (L.) Crantz. (Orchidaceae) in Britain. Bot J Linn Soc 123:321–331

    Google Scholar 

  • Holsinger KE, Lewis PO (2003) Hickory: a package for analysis of population genetics data v.1.1. University of Connecticut, Storrs

    Google Scholar 

  • Holsinger KE, Wallace LE (2004) Bayesian approaches for the analysis of population genetic structure: an example from Platanthera leucophaea (Orchidaceae). Molec Ecol 13:887–894

    Article  Google Scholar 

  • Holsinger KE, Lewis PO, Dipak KD (2002) A Bayesian approach to inferring population structure from dominant markers. Molec Ecol 11:1157–1164

    Article  CAS  Google Scholar 

  • Hornemann G, Michalski SG, Durka W (2012) Short-term fitness and long-term population trends in the orchid Anacamptis morio. Pl Ecol 213:1583–1595

    Article  Google Scholar 

  • Hultén E, Fries M (1986) Atlas of North European Vascular Plants. North of the Tropic of Cancer. Koeltz Scientific Books, Köningstein

    Google Scholar 

  • Ishihama F, Ueno S, Tsumura Y, Washitani I (2005) Gene flow and inbreeding depression inferred from fine-scale genetic structure in an endangered heterostylous perennial, Primula sieboldii. Molec Ecol 14:983–990

    Article  CAS  Google Scholar 

  • Jacquemyn H, Brys R, Vandepitte K, Honnay O, Roldan-Ruiz I (2006) Fine-scale genetic structure of life history stages in the food-deceptive orchid Orchis purpurea. Molec Ecol 15:2801–2808

    Article  Google Scholar 

  • Jacquemyn H, Vandepitte K, Brys R, Honnay O, Roldan-Ruiz I (2007) Fitness variation and genetic diversity in small, remnant populations of the food deceptive orchid Orchis purpurea. Biol Conservation 139:203–210

    Article  Google Scholar 

  • Jacquemyn H, Brys R, Adriaens D, Honnay O, Roladán-Ruiz I (2009) Effects of population size and forest management on genetic diversity and structure of the tuberous orchid Orchis mascula. Conservation Genet 10:161–168

    Article  Google Scholar 

  • Jacquemyn H, Brys R, Honnay O, Roldán-Ruiz I, Lievens B, Wiegand T (2012) Non-random spatial structuring of orchids in a hybrid zone of three Orchis species. New Phytol 193:454–464

    Article  PubMed  Google Scholar 

  • Jersáková J, Malinová T (2007) Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytol 176:237–241

    Article  PubMed  Google Scholar 

  • Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235

    Article  PubMed  Google Scholar 

  • Knowles P, Perry DJ, Foster HA (1992) Spatial genetic structure in two Tamarack [Larix laricina (Du Roi) K. Koch] populations with differing establishment histories. Evolution 46:572–576

    Article  Google Scholar 

  • Kretzschmar H, Eccarius W, Dietrich H (2007) The Orchid Genera Anacamptis, Orchis and Neotinea. Systematics, taxonomy, morphology, biology, distribution, ecology, hybridisation. EchinoMedia Verlag, Bürgel

    Google Scholar 

  • Kukk T, Kull T (eds) (2005) Atlas of the Estonian flora. Institute of Agricultural and Environmental Sciences of the Estonian University of Life Sciences, Tartu

  • Kull T, Hutchings MJ (2006) A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conservation 129:31–39

    Article  Google Scholar 

  • Kull T, Tuulik T (2002) Kodumaa käpalised. Eesti Orhideekaitse Klubi, Tallinn

    Google Scholar 

  • Kwak MM, Velterop O, van Andel J (1998) Pollen and gene flow in fragmented habitats. Appl Veg Sci 1:37–54

    Article  Google Scholar 

  • Laasimer L (1965) Eesti NSV taimkate. Valgus, Tallinn

    Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fisher M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Mariette S, Lefranc M, Legrand P, Taneyhill D, FrascariaLacoste N, Machon N (1997) Genetic variability in wild cherry populations in France. Effects of colonizing processes. Theor Appl Genet 94:904–908

    Article  Google Scholar 

  • McCauley DE (1991) Genetic consequences of local population extinction and recolonization. Trends Ecol Evol 6:5–8

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto N, Kuramoto N, Yamada H (2002) Differences in spatial autocorrelation between four sub-populations of Alnus trabeculosa Hand.-Mazz. (Betulaceae). Heredity 89:273–279

    Article  CAS  PubMed  Google Scholar 

  • Muñoz M, Warner J, Albertazzi FJ (2010) Genetic diversity analysis of the endangered slipper orchid Phragmipedium longifolium in Costa Rica. Pl Syst Evol 290:217–223

    Article  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molec Ecol 13:1143–1155

    Article  CAS  Google Scholar 

  • Paris M, Bonnes B, Ficetola GF, Poncet BN, Després L (2010) Amplified fragment length homoplasy: in silico analysis for model and non-model species. BMC Genom. doi:10.1186/1471-2164-11-287

    Google Scholar 

  • Parker KC, Hamrick JL, Parker AJ, Nason JD (2001) Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effect of disturbance history. Heredity 87:99–113

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Beattie J (1996) Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentactulata. Evolution 50:2207–2220

    Article  Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732

    Article  Google Scholar 

  • Scopece G, Cozzolino S, Johnson SD, Schiestl FP (2010) Pollination efficiency and the evolution of specialized deceptive pollination systems. Amer Naturalist 175:98–105

    Article  Google Scholar 

  • Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Amer J Bot 95:156–164

    Article  Google Scholar 

  • Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Popul Biol 12:253–262

    Article  CAS  PubMed  Google Scholar 

  • Smithson A (2006) Pollinator limitation and inbreeding depression in orchid species with and without nectar rewards. New Phytol 169:419–430

    Article  PubMed  Google Scholar 

  • StatSoft Inc. (2008) STATISTICA (data analysis software system), version 8. www.statsoft.com

  • Sun M (1997) Genetic diversity in three colonizing orchids with contrasting mating systems. Amer J Bot 84:224–232

    Article  CAS  Google Scholar 

  • Tero N, Aspi J, Siikamäki P, Jäkäläniemi A (2005) Local genetic population structure in an endangered plant species, Silene tatarica (Caryophyllaceae). Heredity 94:478–487

    Article  CAS  PubMed  Google Scholar 

  • Travis SE, Proffitt CE, Lowenfeld RC, Mitchell TW (2002) A comparative assessment of genetic diversity among differently-aged populations of Spartina alterniflora on restored versus natural wetlands. Restorat Ecol 10:37–42

    Article  Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54

    Article  Google Scholar 

  • Tremetsberger K, Stuessy TF, Samuel RM, Baeza CM, Fay MF (2003) Genetics of colonization in Hypochaeris tenuifolia (Asteraceae, Lactuceae) on Volcan Lonquimay, Chile. Molec Ecol 12:2649–2659

    Article  CAS  Google Scholar 

  • Troupin D, Nathan R, Vendramin GG (2006) Analysis of spatial genetic structure in an expanding Pinus halepensis population reveals development of fine-scale genetic clustering over time. Molec Ecol 15:3617–3630

    Article  CAS  Google Scholar 

  • Vandepitte K, Gristina AS, De Hert K, Meekers T, Roldán-Ruiz I, Honnay O (2012) Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid. Molec Ecol 21:4206–4215

    Article  CAS  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Molec Ecol 13:921–935

    Article  CAS  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molec Ecol 11:139–151

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters J, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waite S, Farrell L (1998) Population biology of the rare military orchid (Orchis militaris L.) at an established site in Suffolk England. Bot J Linn Soc 126:109–121

    Google Scholar 

  • Whitlock MC, McCauley DE (1990) Some population genetic consequences of colony formation and extinction: genetic correlations within founding groups. Evolution 44:1717–1742

    Article  Google Scholar 

  • Yang S, Bishop JG, Webster MS (2008) Colonization genetics of an animal-dispersed plant (Vaccinium membranaceum) at Mount St Helens, Washington. Molec Ecol 17:731–740

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Estonian Science Foundation grant 8584 and the IUT21-1 financed by the Estonian Ministry of Education and Research. We would like to thank also the TAA Herbarium in the Estonian University of Life Sciences, and Ove Lindgren for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aigi Ilves.

Additional information

Handling editor: Andreas Tribsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilves, A., Metsare, M., Tali, K. et al. The impact of recent colonization on the genetic diversity and fine-scale genetic structure in Orchis militaris (L.). Plant Syst Evol 301, 1875–1886 (2015). https://doi.org/10.1007/s00606-015-1200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1200-7

Keywords

Navigation