Skip to main content
Log in

Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in \({\mathbb {R}}^N\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p-Laplacian equations of Schrödinger–Kirchhoff type

$$\begin{aligned} M\left( \iint _{R^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right) (-\varDelta )^s_pu+V(x)|u|^{p-2}u=f(x,u)+g(x) \end{aligned}$$

in \({\mathbb {R}}^N\), where \((-\varDelta )^s_p\) is the fractional p-Laplacian operator, with \(0<s<1<p<\infty \) and \(ps<N\), the nonlinearity \(f:{\mathbb {R}}^N\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a Carathéodory function and satisfies the Ambrosetti–Rabinowitz condition, \(V:{\mathbb {R}}^N\rightarrow {\mathbb {R}}^+\) is a potential function and \(g:{\mathbb {R}}^N\rightarrow {\mathbb {R}}\) is a perturbation term. We first establish Batsch–Wang type compact embedding theorem for the fractional Sobolev spaces. Then multiplicity results are obtained by using the Ekeland variational principle and the Mountain Pass theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Alves, C.O., Corrês, F.J.S.A., Ma, T.F.: Positive solutions for a equasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Rabinowiz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  Google Scholar 

  4. Applebaum, D.: Lévy processes—from probability to finance quantum groups. Notices Am. Math. Soc. 51, 1336–1347 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \({\mathbb{R}}^N\). J. Differ. Equ. 255, 2340–2362 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barrios, B., Colorado, E., De Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133–6162 (2012)

    Article  MATH  Google Scholar 

  7. Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1–21 (2001)

    Article  MathSciNet  Google Scholar 

  8. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}}^{N}\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)

    MATH  Google Scholar 

  10. Caffarelli, L.: Nonlocal equations, drifts and games. Nonlinear Partial Differ. Equ. Abel Symp. 7, 37–52 (2012)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41, 203–240 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chang, X., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chang, X., Wang, Z.Q.: Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256, 2965–2992 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, C., Song, H., Xiu, Z.: Multiple solution for \(p\)-Kirchhoff equations in \({\mathbb{R}}^{N}\). Nonlinear Anal. 86, 146–156 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, S.J., Lin, L.: Multiple solutions for the nonhomogeneous Kirchhoff equation on \({\mathbb{R}}^N\). Nonlinear Anal. RWA 14, 1477–1486 (2013)

    Article  MATH  Google Scholar 

  17. Colasuonno, F., Pucci, P.: Multiplicity of solutions for \(p(x)\)-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 74, 5962–5974 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Corrěa, F.J.S.A., Figueiredo, G.M.: On an elliptic equation of \(p\)-Kirchhoff type via variational methods. Bull. Austral. Math. Soc. 74, 236–277 (2006)

    Google Scholar 

  19. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche 68, 201–216 (2013)

    MATH  MathSciNet  Google Scholar 

  21. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  22. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ferrara, M., Guerrini, L., Zhang, B.L.: Multiple solutions for perturbed non-local fractional Laplacian equations. Electron. J. Differ. Equ. 2013 (2013)

  24. Ferrara, M., Molica Bisci, G., Zhang, B.L.: Existence of weak solutions for non-local fractional problems via Morse theory. Discrete Contin. Dyn. Syst. Ser. B 19, 2483–2499 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Mat. Univ. Parma 5, 315–328 (2014)

    MathSciNet  Google Scholar 

  27. Iannizzotto A., Liu S., Perera K., Squassina M., Existence results for fractional \(p\)-Laplacian problems via Morse theory. Adv. Calc. Var. doi:10.1515/acv-2014-0024

  28. Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional \(p\)-eigenvalue problems. Asymptotic Anal. 88, 233–245 (2014)

    MATH  MathSciNet  Google Scholar 

  29. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    Google Scholar 

  30. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  32. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795–826 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lions, P.L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lions, P.L.: The concentration-compactness principle in the calculus of variations, the locally compact case. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145, 223–283 (1984)

  35. Metzler, R., Klafter, J.: The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  MathSciNet  Google Scholar 

  36. Molica Bisci, G.: Fractional equations with bounded primitive. Appl. Math. Lett. 27, 53–58 (2014)

    Article  MathSciNet  Google Scholar 

  37. Molica Bisci, G., Pansera, B.A.: Three weak solutions for nonlocal fractional equations. Adv. Nonlinear Stud. 14, 619–630 (2014)

    MATH  MathSciNet  Google Scholar 

  38. Molica Bisci, G., Servadei, R.: A bifurcation result for non-local fractional equations. Anal. Appl. 13, 371–394 (2015)

    Article  MathSciNet  Google Scholar 

  39. Nyamoradi, N.: Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 18, 489–502 (2013)

    MATH  MathSciNet  Google Scholar 

  40. Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \({\mathbb{R}}^{N}\) involving nonlocal operators. Rev. Mat. Iberoam. (2016, to appear)

  41. Pucci, P., Zhang, Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ. Equ. 257, 1529–1566 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger in \({\mathbb{R}}^{N}\). J. Math. Phys. 54, 031501 (2013)

  43. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)

    MATH  MathSciNet  Google Scholar 

  45. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MATH  Google Scholar 

  46. Tan, J.: The Brezis–Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 36, 21–41 (2011)

    Article  Google Scholar 

  47. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  48. Xiang, M.Q., Zhang, B.L., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian. J. Math. Anal. Appl. 424, 1021–1041 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  49. Zhang, B.L., Ferrara, M.: Multiplicity of solutions for a class of superlinear non-local fractional equations. Complex Var. Elliptic Equ. 60, 583–595 (2015)

    Article  MathSciNet  Google Scholar 

  50. Zhang, B.L., Ferrara, M.: Two weak solutions for perturbed non-local fractional equations. Appl. Anal. 94, 891–902 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

P. Pucci is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica “G. Severi” (INdAM) and was partially supported by the MIUR Project Aspetti variazionali e perturbativi nei problemi differenziali nonlineari, and finally the manuscript was realized within the auspices of the INDAM-GNAMPA Project 2015 titled Modelli ed equazioni non-locali di tipo frazionario (Prot_2015_000368). M. Xiang was support by the Fundamental Research Funds for the Central Universities (No. 3122015L014). B. Zhang was supported by Natural Science Foundation of Heilongjiang Province of China (No. A201306) and Research Foundation of Heilongjiang Educational Committee (No. 12541667) and Doctoral Research Foundation of Heilongjiang Institute of Technology (No. 2013BJ15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingqi Xiang or Binlin Zhang.

Additional information

Communicated by A. Malchiodi.

Appendix

Appendix

In this section we show that the Banach space W defined in the Introduction is a uniformly convex Banach space. We prefer to give full details for completeness, even if it could be readily seen.

Lemma 10

\(W=(W,\Vert \cdot \Vert _{W})\) is a uniformly convex Banach space.

Proof

Clearly W is complete with respect to the norm \(\Vert \cdot \Vert _{W}\). Indeed, let \(\{u_n\}_n\) be a Cauchy sequence in W. Thus, for any \(\varepsilon >0\) there exists \(\mu _\varepsilon >0\) such that if \(n,m\ge \mu _\varepsilon \), then

$$\begin{aligned} V_0\Vert u_n-u_m\Vert _{L^p({\mathbb {R}}^N)}^p\le \Vert u_n-u_m\Vert ^p_{W}<\varepsilon . \end{aligned}$$
(5.1)

By the completeness of \(L^p({\mathbb {R}}^N)\), there exists \(u\in L^p({\mathbb {R}}^N)\) such that \(u_n\rightarrow u\) strongly in \(L^p({\mathbb {R}}^N)\) as \(n\rightarrow \infty \). So, there exists a subsequence \(\{u_{n_k}\}\) in W such that \(u_{n_k}\rightarrow u\) a.e. in \({\mathbb {R}}^N\) as \(k\rightarrow \infty \) (see [9, Theorem 4.9]). Therefore, by the Fatou Lemma and the second inequality in (5.1) with \(\varepsilon =1\), we have

$$\begin{aligned} \iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}dxdy&\le \liminf _{k\rightarrow \infty }\iint _{{\mathbb {R}}^{2N}}\frac{|u_{n_k}(x)-u_{n_k}(y)|^{p}}{|x-y|^{N+ps}}dxdy\\&\le \liminf _{k\rightarrow \infty }\left( \Vert u_{n_k}-u_{\mu _1}\Vert _{W}+\Vert u_{\mu _1}\Vert _{W}\right) ^p\\&\le (1+\Vert u_{\mu _1}\Vert _{W})^p<\infty . \end{aligned}$$

Thus, \(u\in W\). Let \(n\ge \mu _\varepsilon \), by the second inequality in (5.1) and the Fatou Lemma, we get

$$\begin{aligned} \Vert u_n-u\Vert _{W}^p\le \liminf _{k\rightarrow \infty }\Vert u_n-u_{n_k}\Vert _{W}^p\le \varepsilon , \end{aligned}$$

that is, \(u_n\rightarrow u\) strongly in W as \(n\rightarrow \infty \).

Next, we prove that \((W, \Vert \cdot \Vert _{W})\) is uniformly convex. To this aim fix \(\varepsilon \in (0,2)\) and let \(u, v\in W\), with \(\Vert u\Vert _{W}=\Vert v\Vert _{W}=1\) and \(\Vert u-v\Vert _{W}\ge \varepsilon \).

Case \(p\ge 2\). By the following inequality (see [1])

$$\begin{aligned} \left| \frac{a+b}{2}\right| ^{p}+\left| \frac{a-b}{2}\right| ^{p}\le \frac{1}{2}\left( |a|^{p}+|b|^{p}\right) \quad \forall \ a,\ b\in {\mathbb {R}}, \end{aligned}$$

it is easy to verify that

$$\begin{aligned}&\left\| \frac{u+v}{2}\right\| ^p_{W}+\left\| \frac{u-v}{2}\right\| ^p_{W}\nonumber \\&\quad =\left[ \frac{u+v}{2}\right] ^p_{s,p}+\left[ \frac{u-v}{2}\right] ^p_{s,p} +\left\| \frac{u+v}{2}\right\| ^p_{p,V}+\left\| \frac{u-v}{2}\right\| ^p_{p,V}\nonumber \\&\quad \le \frac{1}{2}\left( \left[ u\right] ^p_{s,p}+\left[ v\right] ^p_{s,p}+\left\| u\right\| ^p_{p,V}+\left\| v\right\| ^p_{p,V}\right) \nonumber \\&\quad =\frac{1}{2}\Vert u\Vert ^p_{W}+\frac{1}{2}\Vert v\Vert ^p_{W}=1. \end{aligned}$$
(5.2)

It follows from (5.2) that \( \left\| (u+v)/2\right\| ^p_{W}\le 1-(\varepsilon /2)^p. \) Taking \(\delta = \delta (\varepsilon )\) such that \(1-(\varepsilon /2)^p = (1-\delta )^p\), we obtain that \( \left\| (u+v)/2\right\| _{W}\le 1-\delta .\)

Case \(1<p<2\). First, we notice that

$$\begin{aligned} {[}u]^{p^\prime }_{s,p}=\left[ \iint _{{\mathbb {R}}^{2N}}\left( \left( \left| u(x)-u(y)\right| \cdot \left| x-y\right| ^{\frac{-N-ps}{p}}\right) ^{p^\prime }\right) ^{p-1}dxdy\right] ^{\frac{1}{p-1}}, \end{aligned}$$

here \(p^\prime =p/(p-1)\). Using the reverse Minkowski inequality (see [1, Theorem 2.13]) and \((V_{1})\), we get

$$\begin{aligned}&\left\| \frac{u+v}{2}\right\| _{W}^{p^\prime }+\left\| \frac{u-v}{2}\right\| _{W}^{p^\prime }\nonumber \\&\quad =\left\| \left( \left| \frac{u(x)+v(x)}{2}-\frac{u(y)+v(y)}{2}\right| |x-y|^{\frac{-N-ps}{p}}\right) ^{p^\prime }\right\| _{L^{p-1}({\mathbb {R}}^{2N})}\nonumber \\&\qquad +\left\| \left( V(x)^{\frac{1}{p}} \left| \frac{u(x)+v(x)}{2}\right| \right) ^{p^\prime } \right\| _{L^{p-1}({\mathbb {R}}^{2N})}\nonumber \\&\qquad +\left\| \left( \left| \frac{u(x)+v(x)}{2}-\frac{u(y)+v(y)}{2}\right| |x-y|^{\frac{-N-ps}{p}}\right) ^{p^\prime }\right\| _{L^{p-1}({\mathbb {R}}^{2N})}\nonumber \\&\qquad +\left\| \left( V(x)^{\frac{1}{p}} \left| \frac{u(x)-v(x)}{2}\right| \right) ^{p^\prime } \right\| _{L^{p-1}({\mathbb {R}}^{2N})}\nonumber \\&\quad \le \left\{ \iint _{{\mathbb {R}}^{2N}}\left[ \left( \left| \frac{u(x)-u(y)}{2}+\frac{v(x)-v(y)}{2}\right| |x-y|^{\frac{-N-ps}{p}}\right) ^{p^\prime }\right. \right. \nonumber \\&\qquad +\left( V(x)^{\frac{1}{p}} \left| \frac{u(x)+v(x)}{2}\right| \right) ^{p^\prime }\nonumber \\&\qquad +\left( \left| \frac{u(x)-u(y)}{2}-\frac{v(x)-v(y)}{2}\right| |x-y|^{\frac{-N-ps}{p}}\right) ^{p^\prime }\nonumber \\&\qquad \left. \left. +\left( V(x)^{\frac{1}{p}} \left| \frac{u(x)-v(x)}{2}\right| \right) ^{p^\prime }\right] ^{p-1}dxdy\right\} ^{\frac{1}{p-1}}. \end{aligned}$$
(5.3)

By the following inequality (see [1])

$$\begin{aligned} \left| \frac{a+b}{2}\right| ^{p^\prime }+\left| \frac{a-b}{2}\right| ^{p^\prime }\le \left( \frac{1}{2}\left( \left| a\right| ^{p}+\left| b\right| ^{p}\right) \right) ^{\frac{1}{p-1}}\quad \hbox {for all }a,\ b\in {\mathbb {R}}, \end{aligned}$$

we obtain in addition to (5.3) that

$$\begin{aligned} \left\| \frac{u+v}{2}\right\| _{W}^{p^\prime }+\left\| \frac{u-v}{2}\right\| _{W}^{p^\prime } \le \left( \frac{1}{2}\Vert u\Vert ^p_{W}+\frac{1}{2}\Vert v\Vert ^p_{W}\right) ^{p^\prime -1}=1. \end{aligned}$$
(5.4)

Here we apply the following inequality:

$$\begin{aligned} \left( a^{\frac{1}{p-1}}+b^{\frac{1}{p-1}}\right) ^{p-1}\le a+b\quad \hbox {for all } a,\ b\ge 0, \end{aligned}$$

thanks to \(1<p<2\). From (5.4) we have

$$\begin{aligned} \left\| \frac{u+v}{2}\right\| ^{p^\prime }_{W}\le 1-\left( \frac{\varepsilon }{2}\right) ^{p^\prime }. \end{aligned}$$

Taking \(\delta =\delta (\varepsilon )\) such that \(1-(\varepsilon /2)^{p^\prime }=(1-\delta )^{p^\prime }\), we get the desired claim. \(\square \)

Remark 2

By Theorem 1.21 of [1], the space W is a reflexive Banach space. With the same arguments as Lemma 10, it easily follows that \(W^{s,p}({\mathbb {R}}^N)\) is also a uniformly convex Banach space, and hence \(W^{s,p}({\mathbb {R}}^N)\) is a reflexive Banach space.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pucci, P., Xiang, M. & Zhang, B. Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in \({\mathbb {R}}^N\) . Calc. Var. 54, 2785–2806 (2015). https://doi.org/10.1007/s00526-015-0883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0883-5

Mathematics Subject Classification

Navigation