Skip to main content
Log in

Existence of infinitely many solutions for fractional p-Laplacian Schrödinger–Kirchhoff type equations with sign-changing potential

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this paper, we investigate the existence of infinitely many solutions for the following fractional p-Laplacian equations of Schrödinger–Kirchhoff type

$$\begin{aligned} \left( a+b\iint _{{{\mathbb {R}}}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right) ^{p-1} (-\Delta )^s_p u+V(x)|u|^{p-2}u=f(x,u) \end{aligned}$$

in \({{\mathbb {R}}}^N\), where \(0<s<1\), \(2\le p<\infty \), \(a,b>0\) are constants. Under some appropriate assumptions on V and f, we prove that the above problem possesses multiple solutions by utilizing some new tricks. Furthermore, our assumptions are suitable and different from those studied previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Mat. Univ. Parma 5, 315–328 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Iannizzotto, A., Liu, S., Perera, K., Squassina, M.: Existence results for fractional \(p\)-Laplacian problems via Morse theory. Adv. Calc. Var. 9, 101–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional \(p\)-eigenvalue problems. Asymptot. Anal. 88, 233–245 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial. Differ. Equ. 49, 795–826 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Applebaum, D.: Lévy processes-from probability to finance quantum groups. Not. Am. Math. Soc. 51, 1336–1347 (2004)

    MATH  Google Scholar 

  6. Caffarelli, L.: Nonlocal equations, drifts and games. Nonlinear Partial Differ. Equ. Abel Symp. 7, 37–52 (2012)

    Article  MATH  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial. Differ. Equ. 41, 203–240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Metzler, R., Klafter, J.: The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\). J. Differ. Equ. 255, 2340–2362 (2013)

    Article  MATH  Google Scholar 

  11. Barrios, B., Colorado, E., De Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133–6162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, X., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, X., Wang, Z.Q.: Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256, 2965–2992 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferrara, M., Guerrini, L., Zhang, B.L.: Multiple solutions for perturbed non-local fractional Laplacian equations. Electron. J. Differ. Equ. 2013, 1–10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferrara, M., Molica Bisci, G., Zhang, B.L.: Existence of weak solutions for non-local fractional problems via Morse theory. Discr. Contin. Dyn. Syst. Ser. B 19, 2483–2499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Molica, G.: Bisci, fractional equations with bounded primitive. Appl. Math. Lett. 27, 53–58 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Molica Bisci, G., Pansera, B.A.: Three weak solutions for nonlocal fractional equations. Adv. Nonlinear Stud. 14, 619–630 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Molica Bisci, G., Servadei, R.: A bifurcation result for non-local fractional equations. Anal. Appl. 13, 371–394 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discr. Contin. Dyn. Syst. 33, 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Tan, J.: The Brezis–Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial. Differ. Equ. 36, 21–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, B.L., Ferrara, M.: Multiplicity of solutions for a class of superlinear non-local fractional equations. Complex Var. Elliptic Equ. 60, 583–595 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, B.L., Ferrara, M.: Two weak solutions for perturbed non-local fractional equations. Appl. Anal. 94, 891–902 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  27. Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche 68, 201–216 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  29. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger in \(\mathbb{R}^N\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nyamoradi, N.: Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 18, 489–502 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \(\mathbb{R}^N\) involving nonlocal operators. Rev. Mat. Iberoam. 32, 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pucci, P., Zhang, Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ. Equ. 257, 1529–1566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bisci, G.M.: Sequence of weak solutions for fractional equations. Math. Res. Lett. 21, 241–53 (2014)

    MathSciNet  Google Scholar 

  36. Zhao, G., Zhu, X., Li, Y.: Existence of infinitely many solutions to a class of Kirchhoff–Schrödinger–Poisson system. Appl. Math. Comput. 256, 572–81 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Chen, W.: Multiplicity of solutions for a fractional Kirchhoff type problem. Commun. Pure Appl. Anal. 14, 2009–2020 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, Z., Qian, C.: Infinitely many solutions for a Kirchhoff-type problem with non-standard growth and indefinite weight Z. Angew. Math. Phys. 66, 399–415 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pucci, P., Xiang, M.Q., Zhang, B.L.: Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27–55 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Nyamoradi, N., Zaidan, L.I.: Existence and multiple of solutions for fractional \(p\)-Laplacian Schrödinger–Kirchhoff type equations. Complex Var. Elliptic Equ. pp. 1–14 (2017)

  41. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R}^N\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  MATH  Google Scholar 

  42. Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tang, X.H., Chen, S.T.: Ground state solutions of Nehari-Pohozaev type for Schrödinger–Poisson problems with general potentials. Disc. Contin. Dyn. Syst. 37, 4973–5002 (2017)

    Article  MATH  Google Scholar 

  44. Tang, X.H., Chen, S.T.: Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial. Differ. Equ. 56, 110–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Guo, Y.X., Nie, J.J.: Existence and multiplicity of nontrivial solutions for \(p\)-Laplacian Schrödinger–Kirchhoff-type equations. J. Math. Anal. Appl. 428, 1054–1069 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nie, J.J.: Existence and multiplicity of nontrivial solutions for a class of Schrödinger–Kirchhoff-type equations. J. Math. Anal. Appl. 417, 65–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pucci, P., Xiang, M.Q., Zhang, B.L.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional \(p\)-Laplacian in \(\mathbb{R}^N\). Calc. Var. Part. Differ. Equ. 54, 2785–2806 (2015)

    Article  MATH  Google Scholar 

  48. Cheng, B.T., Tang, X.H.: New existence of solutions for the fractional \(p\)-Laplacian equations with sign-changing potential and nonlinearity. Mediterr. J. Math. 13, 3373–3387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tang, X.H.: Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity. J. Math. Anal. Appl. 401, 407–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bartolo, T., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal. 7, 241–273 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the NNSF (Nos. 11601145, 11571370), by the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2017zzts312), by the Natural Science Foundation of Hunan Provincial (No. 2017JJ3130), and by the Outstanding youth project of Education Department of Hunan Province (17B143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youpei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tang, X. & Zhang, J. Existence of infinitely many solutions for fractional p-Laplacian Schrödinger–Kirchhoff type equations with sign-changing potential. RACSAM 113, 569–586 (2019). https://doi.org/10.1007/s13398-018-0497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-018-0497-9

Keywords

Mathematics Subject Classification

Navigation