Skip to main content
Log in

Abstract

We study the non-local eigenvalue problem

$$\begin{aligned} 2\, \int \limits _{\mathbb{R }^n}\frac{|u(y)-u(x)|^{p-2}\bigl (u(y)-u(x)\bigr )}{|y-x|^{\alpha p}}\,dy +\lambda |u(x)|^{p-2}u(x)=0 \end{aligned}$$

for large values of \(p\) and derive the limit equation as \(p\rightarrow \infty \). Its viscosity solutions have many interesting properties and the eigenvalues exhibit a strange behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. These spaces are also known as Aronszajn, Gagliardo or Slobodeckij spaces

  2. The name “principal frequency” is synonymous.

  3. In the linear case this integral operator has been treated as the principal value of a singular integral.

  4. The idea is obvious in the case \(p=2\).

  5. Note added in proof  In the recent work “A note on positive eigenfunctions and hidden convexity”, Archiv der Mathematik, 2012, Volume 99, Issue 4, pp 367-374, by L. Brasco and G. Franzina, the range for \(\alpha \) in Theorem 14 and Theorem 16 has been widened.

  6. Note added in proof  In the recent work “A note on positive eigenfunctions and hidden convexity”, Archiv der Mathematik, 2012, Volume 99, Issue 4, pp 367-374, by L. Brasco and G. Franzina, the range for \(\alpha \) in Theorem 14 and Theorem 16 has been widened.

References

  1. Anane, A.: Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305(16), 725–728 (1987)

  2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1997). With appendices by Maurizio Falcone and Pierpaolo Soravia

  3. Belloni, M., Kawohl, B.: A direct uniqueness proof for equations involving the p-Laplace operator. Manuscripta Math. 109(2), 229–231 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \({\rm W^{s, p}}\) when \(s\uparrow 1\) and applications. J. Anal. Math. 87, 77–101. Dedicated to the memory of Thomas H. Wolff (2002)

    Google Scholar 

  5. Chambolle, A., Lindgren, E., Monneau, R.: A Hölder infinity Laplacian, accepted for publication in ESAIM: Control, Optimisation and Calculus of Variations (2011)

  6. Champion, T., De Pascale, L., Jimenez, C.: The \(\infty \)-eigenvalue problem and a problem of optimal transportation. Commun. Appl. Anal. 13(4), 547–565 (2009)

    Google Scholar 

  7. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Frank, R.L., Leander, G.: Refined semiclassical asymptotics for fractional powers of the Laplace operator. preprint (2011)

  9. Fukagai, N., Ito, M., Narukawa, K.: Limit as \(p\rightarrow \infty \) of p-Laplace eigenvalue problems and L\(^\infty \)-inequality of the Poincaré type. Differ. Integr. Equ. 12(2), 183–206 (1999)

    MATH  MathSciNet  Google Scholar 

  10. Hynd, R., Smart, C.K., Yu, Y.: Nonuniqueness of infinity ground states, preprint (2012)

  11. Ishii, H., Nakamura, G.: A class of integral equations and approximation of p-Laplace equations. Calc. Var. Partial Differ. Equ. 37(3–4), 485–522 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Juutinen, P., Lindqvist, P., Manfredi, J.J.: The \(\infty \)-eigenvalue problem. Arch. Ration. Mech. Anal. 148(2), 89–105 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kassmann, M.: The classical Harnack inequality fails for nonlocal operators. preprint No. 360, Sonderforschungsbereich 611

  14. Kawohl, B., Lindqvist, P.: Positive eigenfunctions for the p-Laplace operator revisited. Analysis (Munich) 26(4), 545–550 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Kellogg, O.D.: Foundations of Potential Theory, Reprint from the first edition of 1929: Die Grundlehren der Mathematischen Wissenschaften, Band 31. Springer, Berlin (1967)

    Google Scholar 

  16. Koike, S.: A Beginner’s Guide to the Theory of Viscosity Solutions, vol. 13. MSJ Memoirs, Mathematical Society of Japan, Tokyo (2004)

    MATH  Google Scholar 

  17. Kwaśnicki, M.: Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262(5), 2379–2402 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ôtani, M., Teshima, T.: On the first eigenvalue of some quasilinear elliptic equations. Proc. Jpn. Acad. Ser. A Math. Sci. 64(1), 8–10 (1988)

    Google Scholar 

  19. Yifeng, Y.: Some properties of the ground states of the infinity Laplacian. Indiana Univ. Math. J. 56(2), 947–964 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zoia, A., Rosso, A., Kardar, M.: Fractional Laplacian in bounded domains. Phys. Rev. E (3) 76(2), 021116, 11 (2007)

    Google Scholar 

Download references

Acknowledgments

We thank Evgenia Malinnikova for helping us to verify an inequality. We thank the referees for a careful reading of the manuscript and for drawing our attention to the article [9].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Lindgren.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindgren, E., Lindqvist, P. Fractional eigenvalues. Calc. Var. 49, 795–826 (2014). https://doi.org/10.1007/s00526-013-0600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0600-1

Mathematics Subject Classification (2000)

Navigation