Skip to main content

Advertisement

Log in

Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04–1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00–0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fuentes MR, Fernández GA, Pérez JS, Guerrero JG (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353

    Article  Google Scholar 

  2. Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad SM (2000) Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Appl Phycol 12:325–330

    Article  Google Scholar 

  3. Huo J-Z, Nelis HJ, Lavens P, Sorgeloos P, De Leenheer A (1997) Determination of E vitamers in microalgae using high-performance liquid chromatography with fluorescence detection. J Chromatogr A 782:63–68

    Article  CAS  Google Scholar 

  4. Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta (BBA)-Lipids Lipid Metab 1302:17–45

    Article  Google Scholar 

  5. Mendoza H, Martel A, Del Río MJ, Reina GG (1999) Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina. J Appl Phycol 11:15–19

    Article  CAS  Google Scholar 

  6. Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 41–56

  7. Bergé J-P, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Mar Biotechnol I 2005:49–125

    Article  Google Scholar 

  8. Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91:905–915

    Article  CAS  Google Scholar 

  9. Ahern TJ, Katoh S, Sada E (1983) Arachidonic acid production by the red alga Porphyridium cruentum. Biotechnol Bioeng 25:1057–1070

    Article  CAS  Google Scholar 

  10. Koletzko B, Braun M (1991) Arachidonic acid and early human growth: is there a relation? Ann Nutr Metab 35:128–131

    Article  CAS  Google Scholar 

  11. Barclay W, Meager K, Abril J (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129

    Article  CAS  Google Scholar 

  12. Guihéneuf F, Mimouni V, Ulmann L, Tremblin G (2008) Environmental factors affecting growth and omega 3 fatty acid composition in Skeletonema costatum. the influences of irradiance and carbon source: communication presented at the 25ème Congrès Annuel de l’Association des Diatomistes de Langue Francaise (ADLaF), Caen, 25–28 September 2006. Diatom Res 23:93–103

    Article  Google Scholar 

  13. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  Google Scholar 

  14. Muradyan E, Klyachko-Gurvich G, Tsoglin L, Sergeyenko T, Pronina N (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Physiol 51:53–62

    Article  CAS  Google Scholar 

  15. Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    Article  CAS  Google Scholar 

  16. Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  CAS  Google Scholar 

  17. Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles1. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  18. Suen Y, Hubbard J, Holzer G, Tornabene T (1987) Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes1. J Phycol 23:289–296

    Article  CAS  Google Scholar 

  19. Skirrow G (1975) The dissolved gases-carbon dioxide. Chem oceanogr 2:1–192

    CAS  Google Scholar 

  20. Ungsethaphand T, Peerapornpisal Y, Whangchai N (2009) Production of Spirulina platensis using dry chicken manure supplemented with urea and sodium bicarbonate. Maejo Int J Sci Technol 3:379–387

    Google Scholar 

  21. Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29:537–541

    Article  CAS  Google Scholar 

  22. Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate1. J Phycol 24:328–332

    CAS  Google Scholar 

  23. Nichols B, Appleby R (1969) The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry 8:1907–1915

    Article  CAS  Google Scholar 

  24. Jones RF, Speer HL, Kury W (1963) Studies on the growth of the red alga Porphyridium cruentum. Physiol Plant 16:636–643

    Article  CAS  Google Scholar 

  25. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol Pharm 37:911–917

    Article  CAS  Google Scholar 

  26. Ma T, Zuazaga G (1942) Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Ind Eng Chem Anal Ed 14:280–282

    Article  CAS  Google Scholar 

  27. Rao P, Pattabiraman TN (1989) Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Anal Biochem 181:18–22

    Article  CAS  Google Scholar 

  28. Jayasankar R, Valsala K (2008) Influence of different concentrations of sodium bicarbonate on growth rate and chlorophyll content of Chlorella salina. J. MBA I 50:74–78

    Google Scholar 

  29. Guihéneuf F, Mimouni V, Ulmann L, Tremblin G (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J Exp Mar Biol Ecol 369:136–143

    Article  Google Scholar 

  30. Šoštarič M, Golob J, Bricelj M, Klinar D, Pivec A (2009) Studies on the growth of Chlorella vulgaris in culture media with different carbon sources. Chem Biochem Eng Q 23:471–477

    Google Scholar 

  31. Pimolrat P, Direkbusarakom S, Chinajariyawong C, Powtongsook S (2010) The effect of sodium bicarbonate concentrations on growth and biochemical composition of Chaetoceros gracilis Schutt. Kasetsart Univ Fish Res Bull 34:40–47

    Google Scholar 

  32. Yeh KL, Chang JS (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng Life Sci 10:201–208

    Article  CAS  Google Scholar 

  33. Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 39:101–138

    Article  CAS  Google Scholar 

  34. Sánchez J, Harwood JL (2002) Biosynthesis of triacylglycerols and volatiles in olives. Eur J Lipid Sci Technol 104:564–573

    Article  Google Scholar 

  35. Durmaz Y, Monteiro M, Bandarra N, Gökpinar Ş, Işik O (2007) The effect of low temperature on fatty acid composition and tocopherols of the red microalga, Porphyridium cruentum. J Appl Phycol 19:223–227

    Article  CAS  Google Scholar 

  36. Khozin I, Adlerstein D, Bigongo C, Heimer YM, Cohen Z (1997) Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum (II. Studies with radiolabeled precursors). Plant Physiol 114:223–230

    CAS  Google Scholar 

  37. Cohen Z, Shiran D, Khozin I, Heimer YM (1997) Fatty acid unsaturation in the red alga Porphyridium cruentum. Is the methylene interrupted nature of polyunsaturated fatty acids an intrinsic property of the desaturases? Biochim Biophys Acta (BBA)-Lipids Lipid Metab 1344:59–64

    Article  CAS  Google Scholar 

  38. Hodgson PA, Henderson RJ, Sargent JR, Leftley JW (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture. J Appl Phycol 3:169–181

    Article  CAS  Google Scholar 

  39. Larson TR, Rees TAV (1996) Changes in Cell Composition and Lipid Metabolism Mediated by Sodium and Nitrogen Availability in the Marine Diatom Phaeodactylum Tricornutum (Bacillariophyceae) 1. J Phycol 32:388–393

    Article  CAS  Google Scholar 

  40. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochem. 67:696–701

    Article  CAS  Google Scholar 

  41. Hu H, Gao K (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol Lett 28:987–992

    Article  CAS  Google Scholar 

  42. Tan Y, Lin J (2011) Biomass production and fatty acid profile of a Scenedesmus rubescens-like microalga. Bioresour Technol 102:10131–10135

    Article  CAS  Google Scholar 

  43. Liang K, Zhang Q, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25:311–318

    Article  CAS  Google Scholar 

  44. Akimoto M, Shirai A, Ohtaguchi K, Koide K (1998) Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga Porphyridium cruentum. Appl Biochem Biotechnol 73:269–278

    Article  CAS  Google Scholar 

  45. Touzet N, Franco JM, Raine R (2007) Influence of inorganic nutrition on growth and PSP toxin production of Alexandrium minutum (Dinophyceae) from Cork Harbour, Ireland. Toxicon 50:106–119

    Article  CAS  Google Scholar 

  46. Kavanová M, Lattanzi FA, Grimoldi AA, Schnyder H (2006) Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant Physiol 141:766–775

    Article  Google Scholar 

  47. Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae1. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  48. Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  CAS  Google Scholar 

  49. Haines T, Erwin J (1973) Lipids and Biomembranes of Eukaryotic Microorganisms. Academic Press, New York

    Google Scholar 

  50. Shiran D, Khozin I, Heimer YM, Cohen Z (1996) Biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. I: the use of externally supplied fatty acids. Lipids 31:1277–1282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the special fund for Fujian Ocean High-Tech Industry Development (No. 2013015), China, and research program from the Science and Technology Bureau of Xiamen City in China (3502Z20151254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhai Zeng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, G., Jiao, K., Li, Z. et al. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum . Bioprocess Biosyst Eng 39, 1129–1136 (2016). https://doi.org/10.1007/s00449-016-1589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1589-6

Keywords

Navigation