Skip to main content
Log in

Effects of nitrogen and phosphorous stress on the formation of high value LC-PUFAs in Porphyridium cruentum

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study systematically examined the effect of nitrogen and phosphorous stress on the formation of linoleic acid (LA), arachidonic acid (ARA), and eicosapentaenoic acid (EPA) in Porphyridium cruentum gy-h56. P. cruentum was cultivated in six different media conferring different conditions of nitrogen (N) sufficiency/deprivation and phosphorous (P) sufficiency/limitation/deprivation. Over a 16-day cultivation process, the dry-weight content, proportion of total fatty acids (TFAs), and the concentration in the medium of linoleic acid (LA) were greatly improved by a maximum of 2.5-, 1.6-, and 1.1-fold, respectively, under conditions of N or P deprivation compared with N and P sufficiency. In contrast, levels of EPA or ARA were not enhanced under N or P stress conditions. Additionally, the results showed that N deprivation weakened the impact of P deficiency on the content and proportions of LA and EPA, while P deprivation enhanced the impact of N starvation on the content and proportions of LA and EPA. The conditions of N sufficiency and P deprivation (N+P−) were the optimal conditions for the production of LA, while the optimal conditions for EPA, ARA, and TFAs production were N sufficiency and P limitation (N+P−lim). This study suggests the potential application of combining N removal from saline wastewater with the production of LA, ARA, EPA, and biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akimoto M, Shirai A, Ohtaguchi K, Koide K (1998) Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga Porphyridium cruentum. Appl Biochem Biotechnol 73(2–3):269–278

    Article  CAS  Google Scholar 

  • Asgharpour M, Rodgers B, Hestekin JA (2015) Eicosapentaenoic acid from Porphyridium Cruentum: increasing growth and productivity of microalgae for pharmaceutical products. Energies 8(9):10487–10503

    Article  CAS  Google Scholar 

  • Babatsouli P, Fodelianakis S, Paranychianakis N, Venieri D, Dialynas M, Kalogerakis N (2015) Single stage treatment of saline wastewater with marine bacterial-microalgae consortia in a fixed-bed photobioreactor. J Hazard Mater 292:155–163

    Article  CAS  Google Scholar 

  • Biscione F, Pignalberi C, Totteri A, Messina F, Altamura G (2007) Cardiovascular effects of omega-3 free fatty acids. Curr Vasc Pharmacol 5(2):163–172

    Article  CAS  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  Google Scholar 

  • Chu FF, Chu PN, Cai PJ, Li WW, Lam PKS, Zeng RJ (2013) Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol 134:341–346

    Article  CAS  Google Scholar 

  • Cohen Z (1990) The production potential of eicosapentaenoic and arachidonic acid by the red alga porphyridium-cruentum. J Am Oil Chem Soc 67(12):916–920

    Article  CAS  Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J Phycol 24(3):328–332

    CAS  Google Scholar 

  • Coward T, Fuentes-Grunewald C, Silkina A, Oatley-Radcliffe DL, Llewellyn G, Lovitt RW (2016) Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. Bioresour Technol 221:607–615

    Article  CAS  Google Scholar 

  • Ekici F, Gurol G, Ates N (2014) Effects of linoleic acid on generalized convulsive and nonconvulsive epileptic seizures. Turk J Med Sci 44(4):535–539

    Article  CAS  Google Scholar 

  • Greenberg Arnold E (1992) Clesceri Lenore S. Public Health Association (APHA), USA, Washington, DC, Standard methods for the examination of water and wastewater

    Google Scholar 

  • Guiheneuf F, Stengel DB (2015) Towards the biorefinery concept: interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Res 10:152–163

    Article  Google Scholar 

  • Guil-Guerrero J, Belarbi E-H, Rebolloso-Fuentes M (2000) Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum. Bioseparation 9(5):299–306

    Article  CAS  Google Scholar 

  • Guillard RR (1975) Culture of phytoplankton for feeding marine invertebrates Culture of marine invertebrate animals. Springer, pp 29–60

  • Huang Q, Yao L, Liu T, Yang J (2012) Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum. Chem Eng Sci 84:718–726

    Article  CAS  Google Scholar 

  • Jiao K, Chang J, Zeng X, Ng IS, Xiao Z, Sun Y, Tang X, Lin L (2017) 5-Aminolevulinic acid promotes arachidonic acid biosynthesis in the red microalga Porphyridium purpureum. Biotechnol Biofuels 168(10):1–10

    Google Scholar 

  • Jones RF, Speer HL, Kury W (1963) Studies on the growth of the red alga Porphyridium cruentum. Physiol Plantarum 16(3):636–643

    Article  CAS  Google Scholar 

  • Köst HP, Senser M, Wanner G (1984) Effect of nitrate and Sulphate starvation on Porphyridium cruentum cells. Z Pjlanzenphysiol Bd 113(3):231–249

    Article  Google Scholar 

  • Leaver HA, Williamsa JR, Smith C, Whittle IR (2004) Intracellular oxidation by human glioma cell populations: effect of arachidonic acid. Prostaglandins Leukot Essent Fatty Acids 70(5):449–453

    Article  CAS  Google Scholar 

  • Lee Y-H, Bae S-C, Song G-G (2012) Omega-3 polyunsaturated fatty acids and the treatment of rheumatoid arthritis: a meta-analysis. Arch Med Res 43(5):356–362

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  Google Scholar 

  • Miao XL, Wu QY (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  Google Scholar 

  • Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59

    Article  CAS  Google Scholar 

  • Nomura S, Kanazawa S, Fukuhara S (2003) Effects of eicosapentaenoic acid on platelet activation markers and cell adhesion molecules in hyperlipidemic patients with type 2 diabetes mellitus. J Diabetes Complicat 17(3):153–159

    Article  Google Scholar 

  • Nuutila AM, Aura AM, Kiesvaara M, Kauppinen V (1997) The effect of salinity, nitrate concentration, pH and temperature on eicosapentaenoic acid (EPA) production by the red unicellular alga Porphyridium purpureum. J Biotechnol 55(1):55–63

    Article  CAS  Google Scholar 

  • Oh SH, Han JG, Kim Y, Ha JH, Kim SS, Jeong MH, Jeong HS, Kim NY, Cho JS, Yoon WB, Lee SY, Kang DH, Lee HY (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosci Bioeng 108(5):429–434

    Article  CAS  Google Scholar 

  • Pace RT, Burg KJL (2015) The potential in breast tissue engineering for the combined effects of linoleic acid and tamoxifen. J Histotechnol 38(2):39–44

    Article  CAS  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90(4):1429–1441

    Article  CAS  Google Scholar 

  • Pereira LA, Hatanaka E, Martins EF, Oliveira F, Liberti EA, Farsky SH, Curi R, Pithon-Curi TC (2008) Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochem Funct 26(2):197–204

    Article  CAS  Google Scholar 

  • Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94(6):1495–1503

    Article  CAS  Google Scholar 

  • Rodriguez-Ruiz J, Belarbi EH, Sanchez JLG, Alonso DL (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol Tech 12(9):689–691

    Article  CAS  Google Scholar 

  • Roessler PG, Brown LM, Dunahay TG, Heacox DA, Jarvis EE, Schneider JC, Talbot SG, Zeiler KG (1994) Genetic-engineering approaches for enhanced production of biodiesel fuel from microalgae. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. Acs Symposium Series, vol 566, pp 255–270

    Google Scholar 

  • Rogova N, Springer M, Tsoglin L, Franke H, Pulz O (1996) The influence of low and high oxygen tconcentration on the yield and spectrum of fatty acids in Porphyridium cruentum. J Plant Physiol 149(3–4):241–245

    Article  CAS  Google Scholar 

  • Sobczuk TM, Camacho FG, Grima EM, Chisti Y (2006) Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng 28(4):243–250

    Article  CAS  Google Scholar 

  • Su G, Jiao K, Chang J, Li Z, Guo X, Sun Y, Zeng X, Lu Y, Lin L (2016a) Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresour and Bioprocess 3(1):33

    Article  Google Scholar 

  • Su G, Jiao K, Li Z, Guo X, Chang J, Ndikubwimana T, Sun Y, Zeng X, Lu Y, Lin L (2016b) Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess Biosyst Eng 39(7):1129–1136

    Article  CAS  Google Scholar 

  • Vaezi R, Napier JA, Sayanova O (2013) Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae. Mar Drugs 11(12):5116–5129

    Article  CAS  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40(12):3627–3652

    Article  CAS  Google Scholar 

  • Yu SJ, Shen XF, Ge HQ, Zheng H, Chu FF, Hu H, Zeng RJ (2016) Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum. Appl Microbiol Biotechnol 100(15):6927–6934

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Programme for Changjiang Scholars and Innovative Research Team in University, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Jianxiong Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Hao Hu and Hou-Feng Wang contributed to the work equally and should be regarded as co-first authors

Electronic supplementary material

ESM 1

(PDF 1183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Wang, HF., Ma, LL. et al. Effects of nitrogen and phosphorous stress on the formation of high value LC-PUFAs in Porphyridium cruentum. Appl Microbiol Biotechnol 102, 5763–5773 (2018). https://doi.org/10.1007/s00253-018-8943-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8943-3

Keywords

Navigation