Skip to main content
Log in

Identification in an anaerobic batch system: global sensitivity analysis, multi-start strategy and optimization criterion selection

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Several mathematical models have been developed in anaerobic digestion systems and a variety of methods have been used for parameter estimation and model validation. However, structural and parametric identifiability questions are relatively seldom addressed in the reported AD modeling studies. This paper presents a 3-step procedure for the reliable estimation of a set of kinetic and stoichiometric parameters in a simplified model of the anaerobic digestion process. This procedure includes the application of global sensitivity analysis, which allows to evaluate the interaction among the identified parameters, multi-start strategy that gives a picture of the possible local minima and the selection of optimization criteria or cost functions. This procedure is applied to the experimental data collected from a lab-scale sequencing batch reactor. Two kinetic parameters and two stoichiometric coefficients are estimated and their accuracy was also determined. The classical least-squares cost function appears to be the best choice in this case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model no. 1 (ADM1). Water Sci Technol 45(10):65–73

    CAS  Google Scholar 

  2. Siegrist H, Vogt D, Garcia-Heras J, Gujer W (2002) Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36(5):1113–1123

    Article  CAS  Google Scholar 

  3. Haag JE, Vande Wouwer A, Queinnec I (2003) Macroscopic modelling and identification of an anaerobic waste treatment process. Chem Eng Sci 58:4307–4316

    Article  CAS  Google Scholar 

  4. Noykova N, Muller TG, Gyllenberg M, Timmer J (2002) Quantitative analyses of anaerobic wastewater treatment processes: identifiability and parameter estimation. Biotechnol Bioeng 78(1):89–103

    Article  CAS  Google Scholar 

  5. Bernard O, Hadj-Sadok Z, Dochain D, Genovesi A, Steyer JP (2001) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75(4):424–438

    Article  CAS  Google Scholar 

  6. Jeong HS, Suh CW, Lim JL, Lee SH, Shin HS (2005) Analysis and application of ADM1 for anaerobic methane production. Bioprocess Biosys Eng 27(2):81–89

    Article  CAS  Google Scholar 

  7. Noykova N, Gyllenberg M (2000) Sensitivity analysis and parameter estimation in a model of anaerobic wastewater treatment processes with substrate inhibition. Bioprocess Eng 23:343–349

    Article  CAS  Google Scholar 

  8. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice. A guide to assessing scientific models. Probability and Statistics series, Wiley, New York

  9. Mailier J, Delmotte A, Cloutier M, Jolicoeur M, Wouwer AV (2011) Parametric sensitivity analysis and reduction of a detailed nutritional model of plant cell cultures. Biotechnol Bioeng 108(5):1108–1118

    Article  CAS  Google Scholar 

  10. Sin G, Gernaey KV, Neumann MB, Van Loosdrecht MCM, Gujer W (2011) Global sensitivity analysis in wastewater treatment plant model applications: prioritizing sources of uncertainty. Water Res 45(2):639–651

    Article  CAS  Google Scholar 

  11. Walter E, Pronzato L (1997) Identification of parametric models from experimental data. Springer-Verlag, Berlin

    Google Scholar 

  12. Lopez I, Borzacconi L (2009) Modelling a full scale UASB reactor using a COD global balance approach and state observers. Chem Eng J 146:1–5

    Article  CAS  Google Scholar 

  13. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simulat 55(1–3):271–280

    Article  Google Scholar 

  14. Schmidt H, Jirstrand M (2006) Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22(4):514–515. http://www.sbtoolbox2.org

    Google Scholar 

  15. Machado VC, Tapia G, Gabriel D, Lafuente J, Baeza JA (2009) Systematic identifiability study based on the Fisher information matrix for reducing the number of parameters calibration of an activated sludge model. Environ Model Software 24(11):1274–1284

    Article  Google Scholar 

  16. D’Errico J (2005) Bound constrained optimization using fminsearch: fminsearchbnd. Matlab® Central. Available at http://www.mathworks.com/matlabcentral/fileexchange/8277

  17. Sanchez JM, Arijo S, Muñoz MA, Morinigo MA, Borrego JJ (1994) Microbial colonization of different support materials used to enhance the methanogenic process. Appl Microbiol Biotechnol 41(4):480–486

    Article  CAS  Google Scholar 

  18. Lokshina L, Vavilin V, Kettunen H, Rintala J, Holliger C, Nozhevnikova A (2001) Evaluation of kinetic coefficients using integrated Monod and Haldane models for low-temperature acetoclastic methanogenesis. Water Res 35(12):2913–2922

    Article  CAS  Google Scholar 

  19. Kesavan P, Law VJ (2005) Practical identifiability of parameters in Monod kinetics and statistical analysis of residuals. Biochem Eng J 24(2):95–104

    Article  CAS  Google Scholar 

  20. Palatsi J, Illa J, Prenafeta-Boldu FX, Laureni M, Fernandez B, Angelidaki I, Flotats X (2010) Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling. Bioresour Technol 101(7):2243–2251

    Article  CAS  Google Scholar 

  21. Flotats X, Palatsi J, Ahring BK, Angelidaki I (2006) Identifiability study of the proteins degradation model, based on ADM1, using simultaneous batch experiments. Water Sci Technol 54(4):31–39

    Article  CAS  Google Scholar 

  22. Batstone DJ, Torrijos M, Ruiz C, Schmidt JE (2004) Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion. Water Sci Technol 50(10):295–303

    CAS  Google Scholar 

Download references

Acknowledgments

This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its author(s).This study is also supported by a grant from Belspo (Belgian Science Policy) through its Postdoc fellowships to non-EU researchers program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Donoso-Bravo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donoso-Bravo, A., Mailier, J., Ruiz-Filippi, G. et al. Identification in an anaerobic batch system: global sensitivity analysis, multi-start strategy and optimization criterion selection. Bioprocess Biosyst Eng 36, 35–43 (2013). https://doi.org/10.1007/s00449-012-0758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0758-5

Keywords

Navigation