Skip to main content
Log in

Microbial colonization of different support materials used to enhance the methanogenic process

  • Environmental Biotechnology
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Macrobial colonization of the different support materials used to enhance methane production in anaerobic digestors is rapid and occurs in the first 24 h of sludge incubation. Scanning electron microscopy studies reveal a predominant presence of filamentous methanogenic forms, closely resemblingMethanosaeta (Methanothrix), which are located on the outer layer and in the bacterial framework of the biofilm. These findings are consistent with the results obtained from microbial counts using both the most probable number and epifluorescence microscopic techniques, which show an increase in the numbers of aceticlastic methanogens compared to other microbial groups involved, such as sulphate-reducing bacteria, the numbers of which are similar to those obtained under the initial conditions. Moreover, a sharp increase in the bacterial counts is observed by using the epifluorescence microscopic technique applied to homogenized samples, probably due to the count of bacteria released from the support materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Camper AK, LeChavallier MW, Broadway SC, McFeters GA (1985) Evaluation of procedures to desadsorb bacteria from granular activated carbon. J Microbiol Methods 3:187–198

    Google Scholar 

  • Chartrain M, Zeikus JG (1986) Microbial ecophysiology of whey biomethanation: characterization of bacterial trophic populations and prevalent species in continuous culture. Appl Environ Microbiol 51:188–196

    Google Scholar 

  • Cheeseman P, Toms Wood A, Wolfe RS (1972) Isolation and properties of a fluorescent compound, factor F420, fromMethanobacterium strain MoH. J Bacteriol 112:527–531

    PubMed  Google Scholar 

  • Clesceri LS, Greenberg AE, Trussell RR (eds) (1989) Standard methods for the examination of water and wastewater, 17th ed., American Public Health Association, Washington, D.C.

    Google Scholar 

  • Corpe WA (1980) Microbial surface components involved in adsorption of micro-organisms onto surfaces. In: Bitton G, Marshall KC (eds) Adsorption of micro-organisms to surfaces, Wiley, New York, pp 105–144

    Google Scholar 

  • Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalix in nature and disease. Annu Rev Microbiol 35:299–324

    PubMed  Google Scholar 

  • Costerton JW, Cheng KJ, Geesy GC, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    PubMed  Google Scholar 

  • Dubourguier HC, Prensier G, Albagnac G (1988) Structure and microbial activities of granular anaerobic sludge. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff Pol LW (eds) Granular anaerobic sludge: microbiology and technology. Pudoc, Wageningen, pp 18–33

    Google Scholar 

  • Gorris LGM, Deursen JMA van, Drift C van der, Vogels GD (1988) Influence of waste water composition on biofilm development in laboratory methanogenic fluidized bed reactors. Appl Microbiol Biotechnol 29:95–102

    Google Scholar 

  • Gorris LGM, Deursen JMA van, Drift C van der, Vogels GD (1989) Biofilm development in laboratory methanogenic fluidized bed reactors. Biotechnol Bioeng 33:687–693

    Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of nucleopore for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed  Google Scholar 

  • Kamagata Y, Mikami E (1990) Some characteristics of two morphotypes ofMethanothrix soehngenii from mesophilic anaerobic digesters. J Ferment Bioeng 70:272–274

    Google Scholar 

  • Koorneef E, Macario AJL, Grotenhuis JTC, Conway de Macario E (1990) Methanogens revealed immunologically in granules from five upflow anaerobic sludge blanket (UASB) bioreactors grown on different substrates. FEMS Microbiol Ecol 73:225–230

    Google Scholar 

  • Macario AJL, Conway deMMacario E (1988) Quantitave immunologic analysis of the methanogenic flora of digestors reveals a considerable diversity. Appl Environ Microbiol 54:79–86

    Google Scholar 

  • MacLeod FA, Guiot SR, Costerton JW (1990) Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56:1298–1307

    Google Scholar 

  • Maestrojuan GM (1987) Microbiología y bioquímica a del proceso de depuración anaerobia: estudio de las interacciones entre las bacterias anaerobias y los materiales utilizados para su inmovilización. PhD Thesis, University of Sevilla, Spain

    Google Scholar 

  • McCoy WF, Bryers JD, Robbins J, Costerton JW (1981) Observations of fouling biofilm formation. Can J Microbiol 27:910–917

    PubMed  Google Scholar 

  • Muũnoz MA (1991) Estudio del proceso microbiano de la metanogénesis a partir de lodos residuales dométicos. PhD. Thesis, University of Málaga, Spain

    Google Scholar 

  • Muñoz MA, Sánchez JM, Martínez-Manzanares E, Borrego JJ, Moriñigo MA (1992) Effect of sulphate on the methanogenesis from anaerobic digestion of municipal sewage sludges. In: Cecchi F, Mata-Alvarez J, Pohland FG (eds) Proceedings of the International Symposium on Anaerobic Digestion of Solid Waste, IAWR, Venice, Italy. pp 387–390

    Google Scholar 

  • Muñoz MA, Sanchez JM, Rodriguez-Maroto JM, Moriñigo MA, Borrego JT (1993) Evaluation of several factors to optimize the methane production from anaerobic domestic sludges in laboratory conditions. Water Res 28:195–200

    Google Scholar 

  • Murray WD, Berg L van den (1981) Effect of support material on the development of microbial fixed films converting acetic acid to methane. J Appl Bacteriol 51:257–265

    Google Scholar 

  • Novaes RFV (1986) Microbiology of anaerobic digestion. Water Sci Technol 18:1–14

    Google Scholar 

  • Robins JP, Switzenbaum MS (1990) Attachment and early biofilm development of the methane forming anaerobic microbial cultures. Environ Technol 11:521–532

    Google Scholar 

  • Robinson RW, Erdos GW (1985) Immunoelectron microscopic identification ofMethanosarcina spp. in anaerobic digester fluid. Can J Microbiol 31:839–844

    Google Scholar 

  • Sanchez JM, Muñoz MA, Moriñigo MA, Martinez-Manzanares E, Rodriguez-Maroto JM, Borrego JJ (1992) Application of different support materials to the anaerobic sludges supplemented with sulphate in the methanogenic process. In: Cecchi F, Mata-Alvarez J, Pohland FG (eds) Proceedings of the International Symposium on Anaerobic Digestion of Solid Waste, IAWR, Venice, Italy. pp 363–366

    Google Scholar 

  • Taylor-Eighmy T, Maratea D, Bishop PL (1983) Electron microscopic examination of wastewater biofilm formation and structural components. Appl Environ Microbiol 45:1921–1931

    PubMed  Google Scholar 

  • Ten Brummeler E, Hulshoff Pol LW, Dolfing J, Lettinga G, Zehnder AJB (1985) Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture. Appl Environ Microbiol 49:1472–1477

    Google Scholar 

  • Thiele JH, ChartrainM, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol 54:10–19

    Google Scholar 

  • Andel JG van, Breure AM (1984) Anaerobic waste water treatment. Trends Biotechnol 2:16–20

    Google Scholar 

  • Berg L van den (1984) Developments in methanogenesis from industrial waste water. Can J Microbiol 8:975–990

    Google Scholar 

  • Verrier D, Mortier B, Albagnac G (1987) Initial adhesion of methanogenic bacteria to polymers. Biotechnol Lett 9:735–740

    Google Scholar 

  • Verrier D, Mortier B, Dubourguier HC, Albagnac G (1988) Adhesion of anaerobic bacteria to inert supports and development of mathanogenic biofilms. In: Hall ER, Hobson PN (eds) Proceedings of the 5th International Symposium on Anaerobic Digestion. IAWR, Bologna, Italy. pp 61–69

    Google Scholar 

  • Visser FA, Lier JB van, Macario AJL Conway de Macario E. (1991) Diversity and population dynamics of methanogenic bacteria in a granular consortium. Appl Environ Microbiol 57:1728–1734

    Google Scholar 

  • Wu WM, Jain MK, Conway de Macario E, Thiele TH, Zeikus JG (1992) Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntroophic methanogenic granules. Appl Microbiol Biotechnol 38:282–290

    Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11

    PubMed  Google Scholar 

  • Zinder SH, Cardwell SC, Anguish T, Lee M, Koch M (1984) Methanogenesis in a thermophilic (58° C) anaerobic digestor:Methanothrix sp. as an important aceticlastic methanogen. Appl Environ Microbiol 47:796–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, J.M., Arijo, S., Muñoz, M.A. et al. Microbial colonization of different support materials used to enhance the methanogenic process. Appl Microbiol Biotechnol 41, 480–486 (1994). https://doi.org/10.1007/BF00939040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00939040

Keywords

Navigation