Skip to main content

Advertisement

Log in

Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg mL−1) and aqueous leaf extract (40, 80, 120, 160, and 200 μg mL−1) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)50 and LD90 values: A. stephensi had LD50 and LD90 values of 18.041 and 32.575 μg mL−1; A. aegypti had LD50 and LD90 values of 20.399 and 37.534 μg mL−1; and C. quinquefasciatus had LD50 and LD90 values of 21.798 and 39.596 μg mL−1. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of F. elephantum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the adulticidal activity of the plant extracts and AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarthi N, Vasuki C, Panneerselvam C, Prasanakumar K, Madhiyazhagan P, Murugan K (2011) Toxicity and smoke repellency effect of Mimosa pudica L. against the malarial vector Anopheles stephensi (Diptera: Culicidae). Bioscan 6(2):211–214

    Google Scholar 

  • Amer A, Mehlhorn H (2006) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99(4):478–90

    Article  PubMed  Google Scholar 

  • Amerasan D, Murugan K, Kovendan K, Mahesh Kumar P, Panneerselvam C, Subramaniam J, John William S, Hwang JS (2012) Adulticidal and repellent properties of Cassia tora Linn. (Family: Caesalpinaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol Res 111(5):1953–64

    Article  PubMed  Google Scholar 

  • Ashraful Alam M, Rowshanul Habib M, Nikkon F, Khalequzzaman M, Rezaul Karim M (2009) Insecticidal activity of root bark of Calotropis gigantea L. against Tribolium castaneum (Herbst). World J Zool 4(2):90–95

    Google Scholar 

  • Bagavan A, Rahuman A, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103(1):223–9

    Article  PubMed  CAS  Google Scholar 

  • Bagavan A, Kamaraj C, Rahuman AA, Elango G, Zahir AA, Pandiyan G (2009) Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii Glover. Parasitol Res 104(5):1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Bernhard L, Bernhard P, Magnusson P (2003) Management of patients with lymphoedema caused by filariasis in North-eastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Breman JG, Martin AS, Mills A (2004) Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg 71(2):1–15

    PubMed  Google Scholar 

  • Cetin H, Cinbilgel I, Yanikoglu A, Gokceoglu M (2006) Larvicidal activity of some Labiatae (Lamiaceae) plant extracts from Turkey. Phytother Res 20(12):1088–1090

    Article  PubMed  Google Scholar 

  • Chansang U, Zahiri NS, Bansiddhi J, Boonruad T, Thongsrirak P, Mingmuang J, Benjapong N, Mulla MS (2005) Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum Vahl) from Thailand. J Vector Ecol 30(2):195–200

    PubMed  Google Scholar 

  • Choochote W, Chaithong U, Kamsuk K, Rattanachanpichai E, Jitpakdi A, Tippawangkosol P, Chaiyasit D, Champakaew D, Tuetun B, Pitasawat B (2006) Adulticidal activity against Stegomyia aegypti (Diptera: Culicidae) of three Piper spp. Rev Inst Med Trop s Paulo 48(1):33–37

    Article  PubMed  Google Scholar 

  • Curtis CF (1990) Appropriate technology in vector control. CRC, Boca Raton, pp 125–128

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–78

    Google Scholar 

  • Gayathri V, Balakrishna Murthy P (2006) Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India. J Am Mosq Cont Assoc 22:678–688

    Article  CAS  Google Scholar 

  • Govindachari TR, Suresh G, Krishna Kumari GN, Rajamannar T, Partho PD (1999) Nymania-3. A bioactive triterpenoid from Dysoxylum malabaricum. Fitoterapia 70:83–86

    Article  CAS  Google Scholar 

  • Govindarajan M (2010) Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi L. (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 14(2):107–111

    PubMed  CAS  Google Scholar 

  • Govindarajan M (2011) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med 4(2):106–111

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620

    Article  PubMed  Google Scholar 

  • Hay SI, Gething PW, Snow RW (2010) India’s invisible malaria burden. Lancet 376(9754):1716–1717

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang YSM, Wu KH, Umamato JK, Akelord J, Mulla MS (1985) Isolation and identification of mosquito repellent in Artemisia vulgaris. J Chem Ecol 1:1–1297

    Google Scholar 

  • Jeyabalan D, Arul N, Thangamathi P (2003) Studies on effects of Pelargonium citrosa leaf extracts on malarial vector, Anopheles stephensi Liston. Bioresour Technol 89(2):185–189

    Article  PubMed  CAS  Google Scholar 

  • Kovendan K, Arivoli S, Maheshwaran R, Baskar K, Vincent S (2012a) Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 111(3):1025–35

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012b) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol Res 110:195–203

    Article  PubMed  Google Scholar 

  • Kuppusamy C, Murugan K (2006) Mosquitocidal effect of ethanolic extracts of Andrographis paniculata Nees on filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). In: International conference on diversity of insects: challenging issues in management and conservation, 30 January–3 February 2006, Tamil Nadu, India pp 194

  • Lee SE (2000) Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. J Am Mosq Control Assoc 16:245–247

    PubMed  CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–9

    Article  PubMed  Google Scholar 

  • Mathew N, Anitha MG, Bala TSL, Sivakumar SM, Narmadha R, Kalyanasundaram M (2009) Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 104(5):1017–25

    Article  PubMed  Google Scholar 

  • Maurya P, Mohan L, Sharma P, Batabyal L, Srivastava CN (2007) Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae). Entomol Res 37:153–156

    Article  Google Scholar 

  • Minjas JN, Sarda RK (1986) Laboratory observations on the toxicity of Swartzia madagascariens (Leguminaceae) extract to mosquito larvae. Trans R Soc Trop Med Hyg 80:460–461

    Article  PubMed  CAS  Google Scholar 

  • Murugan K, Mahesh Kumar P, Kovendan K, Amerasan D, Subramaniam J (2012) Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 111(4):1757–69

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K (2012) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(2):679–92

    Article  PubMed  Google Scholar 

  • Parashar UK, Saxenaa PS, Srivastava A (2009) Bio inspired synthesis of silver nanoparticles. Dig J Nanomater Bios 4:159–166

    Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunkhe BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poicillia reticulata. Parasitol Res 111(2):555–562

    Article  PubMed  Google Scholar 

  • Pitasawat B, ChoochoteW TB, Tippawangkosol P, Kanjanapothi D, Jitpakdi A, Riyong D (2003) Repellency of aromatic turmeric Curcuma aromatica under laboratory and field conditions. J Vector Ecol 28(2):234–240

    PubMed  Google Scholar 

  • Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 96:1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hitra against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  PubMed  Google Scholar 

  • Radhika W, Ankita R, Jasdeep K. S, Roopa S, NaimW, Sarita K (2012) Larvicidal and irritant activities of hexane leaf extracts of citrus sinensis against dengue vector Aedes aegypti. Asian Pac J Trop Biomed 152–155

  • Rajakumar G, Abdul Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203

    Article  PubMed  CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831

    Article  PubMed  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2009) Amaranthus oleracea and Euphorbia hirta: natural potential larvicidal agents against the urban Indian malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 106(1):171–6

    Article  PubMed  Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tawatsin A, Wratten SD, Scott RR, Thavara U, Techadamrongsin Y (2001) Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol 26:76–82

    PubMed  CAS  Google Scholar 

  • WHO (1992) Lymphatic filariasis: the disease and its control. 5th report. WHO expert Committee on Filariasis. Technical report series. p 821

  • Wilder-Smith A, Chen LH, Massad E, Wilson ME (2009) Threat of dengue to blood safety in dengue-endemic countries. Emerg Infect Dis 15:8–11

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (1981) Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides: diagnostic test. WHO/VBC/81-807, Geneva

  • World Health Organization (2005) Resolution WHA. 58.2. Malaria control. In: Fifty-eight World Health Assembly, Resolutions and Decisions Annex. Geneva

  • World Health Organization (2010) Dengue transmission research in WHO bulletin Zebit CPW (1984): effect of some crude and Azadirachta-enriched neem (Azadirachta indica) seed kernel extracts of larvae of Aedes aegypti. Entomol Exp Appl 35:11–16

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Professor and Head of the Department of Zoology, Annamalai University, for the laboratory facilities provided. The authors would also like to acknowledge the cooperation of staff members of the VCRC (ICMR), Pondicherry and thank Dr. S. Ramesh, Professor and Head, Veterinary College, Vepery, Chennai for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marimuthu Govindarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veerakumar, K., Govindarajan, M. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113, 4085–4096 (2014). https://doi.org/10.1007/s00436-014-4077-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4077-4

Keywords

Navigation