Skip to main content

Advertisement

Log in

Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikunguniya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present study explored the effects of orange peel ethanol extract of Citrus sinensis on larvicidal, pupicidal, repellent and adulticidal activity against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The orange peel material was shade dried at room temperature and powdered coarsely. From orange peel, 300 g powdered was macerated with 1 L of ethanol sequentially for a period of 72 h each and filtered. The yields of the orange peel ethanol crude extract of C. sinensis 13.86 g, respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4 °C. The larvicidal, pupicidal and adult mortality was observed after 24 h of exposure; no mortality was observed in the control group. For C. sinensis, the median lethal concentration values (LC50) observed for the larvicidal and pupicidal activities against mosquito vector species A. stephensi first to fourth larval instars and pupae were 182.24, 227.93, 291.69, 398.00 and 490.84 ppm; A. aegypti values were 92.27, 106.60, 204.87, 264.26, 342.45, 436.93 and 497.41 ppm; and C. quinquefasciatus values were 244.70, 324.04, 385.32, 452.78 and 530.97 ppm, respectively. The results of maximum repellent activity were observed at 450 ppm in ethanol extracts of C. sinensis and the mean complete protection time ranged from 150 to 180 min was tested. The ethanol extract of C. sinensis showed 100 % repellency in 150 min and showed complete protection in 90 min at 350 ppm against A. stephensi, A. aegypti and C. quinquefasciatus, respectively. The adult mortality was found in ethanol extract of C. sinensis with the LC50 and LC90 values of 272.19 and 457.14 ppm, A. stephensi; 289.62 and 494.88 ppm, A. aegypti; and 320.38 and 524.57 ppm, respectively. These results suggest that the orange peel extracts of C. sinensis have the potential to be used as an ideal eco-friendly approach for the control of the vector control programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of insecticides. J Econ Entomol 18:267–269

    Google Scholar 

  • Agarwal R, Jayaraman G, Anand S, Marimuthu P (2006) Assessing respiratory morbidity through pollution status and meteorological conditions for Delhi. Environ Monit Assess 114(1–3):489–504

    Article  PubMed  CAS  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oil against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Amusan AA, Idowu AB, Arowolo FS (2005) Comparative toxicity effect of bush tea leaves (Hyptis suaveolens) and orange peel (Citrus sinensis) oil extract on larvae of the yellow fever mosquito Aedes aegypti. Tanzan Health Res Bull 7(3):174–178

    PubMed  CAS  Google Scholar 

  • Ansari MA, Razdan RK (1994) Repellent action of Cymbopogon martini staf var. Sofia [sic] oil against mosquitoes. Indian J Malariol 31(3):95–102

    PubMed  CAS  Google Scholar 

  • Ansari MA, Razdan RK, Tandon M, Vasudevan P (2000) Larvicidal and Repellent actions of Dalbergia sisoo Roxb. (F. Leguminosae) oil against mosquitoes. Bioresource Technol 73:207

    Google Scholar 

  • Ashraful Alam M, Rowshanul Habib M, Nikkon F, Khalequzzaman M, Rezaul Karim M (2009) Insecticidal Activity of Root Bark of Calotropis gigantea L. against Tribolium castaneum (Herbst). World J Zool 4(2):90–95

    Google Scholar 

  • Bansal SK, Joshi V, Karam Singh V (1994) A survey of the mosquito fauna with special reference to vectors of Japanese Encephalitis (JE) in district Bikaner. Part I—The Culicine fauna. Proc Acad Environ Biol 3:9–15

    Google Scholar 

  • Barnard DR, Posey KH, Smith D, Shreck CE (1998) Mosquito density, biting cycle, and cage size effects on repellent test. Med Vet Entomol 12:39–45

    Article  PubMed  CAS  Google Scholar 

  • Bauer K, Garbe D, Surburg H (2001) Common fragrence and flavor materials, 4th Ed, Wiley VCH, ISBN 3-527-30364-2. 189

  • Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphoedema caused by filariasis in North-eastern Tanzania: alternative approaches. Physiology 89:743–749

    Google Scholar 

  • Breman J (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64:1–11

    PubMed  CAS  Google Scholar 

  • Choi WS, Park BS, Ku SK, Lee SE (2002) Repellent activities of essential oils and monoterpenes against Culex pipiens pallens. J Am Mosq Control Assoc 18:348–351

    PubMed  CAS  Google Scholar 

  • Choochote W, Chaithong U, Kamsuk K, Rattanachanpichai E, Jitpakdi A, Tippawangkosol P, Chaiyasit D, Champakaew D, Tuetun B, Pitasawat B (2006) Adulticidal activity against Stegomyia aegypti (Diptera: culicidae) of three Piper spp. Rev Inst Med Trop S Paulo 48(1):33–37

    Article  PubMed  Google Scholar 

  • Datta S, Ghosh A, Sarkar S, Deka P, Choudhuri T, Pal P, Kar PK (2010) Herbal mosquito repellents: a review. Int J Pharm Sci Biol 1(4):195–202

    Google Scholar 

  • Davies S, Albrigo LG (1994) Citrus. Wallingford, CAB International, p 1

    Google Scholar 

  • Dua VK, Alam MF, Pandey AC, Rai S, Chopra AK, Kaul VK (2008) Insecticidal activity of Valeriana jatamansi (Verbenaceae) against mosquitoes. J Am Mosq Control Assoc 24:315–318

    Article  PubMed  CAS  Google Scholar 

  • Dua VK, Pandey AC, Dash AP (2010) Adulticidal activity of essential oil of Lantana camara leaves against mosquitoes. Indian J Med Res 131:434–439

    PubMed  CAS  Google Scholar 

  • Ezeonu FC, Chidume GI, Udedi SC (2001) Insecticidal properties of volatile extracts of orange peels. Bioresour Technol 76(3):273–274

    Article  PubMed  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–78

    Google Scholar 

  • Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 13:347–418

    Google Scholar 

  • Fundacaõ Nacional de Saú de (2002) Guia de Vigilância Epidemiológica, vol 1, 5th edn. FUNASA—Ministério da Saú de, Brasília

    Google Scholar 

  • Garcia R, Desrochers BD (1979) Toxicity of Bacillus thuringiensis var. israelensis to some California mosquitoes under different conditions. Mosq News 39:541–544

    Google Scholar 

  • Gouge HD, Smith AK, Olson C, Baker P (2001) Mosquitoes. Cooperative extension. Collage of Agriculture and Life Sciences, the University of Arizona

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102(2):289–292

    Article  PubMed  CAS  Google Scholar 

  • Halim ASA (2008) Efficacy of Zingiber officinale on third stage larvae and adult fecundity of Musca domestica and Anopheles pharoensis. J Egypt Soc Parasitol 38:385–392

    PubMed  Google Scholar 

  • Hebbalkar DS, Hebbalkar GD, Sharma RN, Joshi VS, Bhat VS (1992) Mosquito repellent activity of oils from Vitex negundo Linn. leaves. Indian J Med Res 95:200–203

    PubMed  CAS  Google Scholar 

  • Hwang YS, Wu KH, Kumamota J, Axelored H, Mulla MS (1985) Isolation and identification of mosquito repellents in Artemisia vulgaris. J Chem Ecol 11(9):1297–1306

    Article  CAS  Google Scholar 

  • Ibrahim J, Zaki ZM (1998) Development of environment-friendly insect repellents from the leaf oils of selected Malaysian plants. ASEA Rev Biodiv Environ Conserv (ARBEC) 6:1–7

    Google Scholar 

  • Jaenson TG, Palsson K, Borg-Karlson AK (2006) Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J Med Entomol 43:113–119

    Article  PubMed  CAS  Google Scholar 

  • Jeyabalan D, Arul N, Thangamathi P (2003) Studies on effects of Pelargonium citrosa leaf extracts on malarial vector Anopheles stephensi Liston. Bioresour Technol 89:185–189

    Article  PubMed  CAS  Google Scholar 

  • Kalyanasundaram M, Das PK (1985) Larvicidal and synergistic activity of plant extracts for mosquito control. Indian J Med Res 82:19–23

    PubMed  CAS  Google Scholar 

  • Khanna VG, Kannabiran K, Rajakumar G, Rahuman AA, Santhoshkumar T (2011) Biolarvicidal compound gymnemagenol isolated from leaf extract of miracle fruit plant, Gymnema sylvestre (Retz) Schult against malaria and filariasis vectors. Parasitol Res. doi:10.1007/s00436-011-2384-6

  • Knio KM, Usta J, Dagher S, Zournajian H, Kreydiyyeh S (2008) Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus caspius. Bioresour Technol 99:763–768

    Article  PubMed  CAS  Google Scholar 

  • Kovendan K, Murugan K (2011) Effect of medicinal plants on the mosquito vectors from the different agro-climatic regions of Tamil Nadu, India. Adv Environ Biol 5(2):335–344

    Google Scholar 

  • Kovendan K, Murugan K, Thiyagarajan P, Naresh Kumar, Abirami D, Asaikkutti A (2009) Impact of climate change on the filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). In: International Congress of GlobalWarming on Biodiversity of Insects: Management and Conservation, 9–12 February 2009, Tamil Nadu, India, p 62

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Parasitol Res 109:1251–1257

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012a) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol Res 110:195–203

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S (2012b) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110:571–581

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Naresh Kumar A, Vincent S, Hwang JS (2012c) Bio-efficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:669–678

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Panneerselvam C, Mahesh Kumar P, Amerasan D, Subramaniam J, Vincent S, Barnard DR (2012d) Laboratory and field evaluation of medicinal plant extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2736-2

  • Kovendan K, Murugan K, Prasanna Kumar K, Panneerselvam C, Mahesh Kumar P, Amerasan D, Subramaniam J, Vincent S (2012e) Mosquitocidal properties of Calotropis gigantea (Family: Asclepiadaceae) leaf extract and Bacterial insecticide, Bacillus thuringiensis against the mosquito vectors. Parasitol Res. doi:10.1007/s00436-012-2865-2

  • Kovendan K, Arivoli S, Maheshwaran R, Baskar K, Vincent S (2012f) Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-012-2927-5

  • Kovendan K, Murugan K, Shanthakumar SP, Vincent S (2012g) Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Parasitol Res. doi:10.1007/s00436-012-2984-9

  • Kuppusamy C, Ayyadurai N (2012) Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:381–388

    Article  Google Scholar 

  • Lanças FM, Cavicchioli M (1990) Analysis of the essential oils of Brazilian citrus fruits by capillary gas chromatography. J High Resolut Chromatogr 13:207–209

    Article  Google Scholar 

  • Mahesh Kumar P, Murugan K, Kovendan K, Subramaniam J, Amerasan D (2012) Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (Family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2797-2

  • Mansour SA, Messeha SS, Mohamed SM (1998) Botanical Biocides. 5. Mosquitocidal activity of certain Nigella sativa constituents. J Union Arab Biol 10(A):45–63

    Google Scholar 

  • Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365

    Article  PubMed  Google Scholar 

  • Molaei G (2007) Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile Virus in Harris County, Texas. Am J Trop Med Hyg 77(1):73–81

    PubMed  CAS  Google Scholar 

  • Mullai K, Jebanesan A (2007) Bioefficacy of the leaf extract of Cucumis pubescens Willd (Cucurbitaceae) against larval mosquitoes. Bull Biol Sci 4:35–37

    Google Scholar 

  • Mullai K, Jebanesan A, Pushpanathan T (2008) Mosquitocidal and repellent activity of the leaf extract of Citrullus vulgaris (cucurbitaceae) against the malarial vector, Anopheles stephensi Liston (Diptera culicidae). Eur Rev Med Pharmacol Sci 12(1):1–7

    PubMed  CAS  Google Scholar 

  • Murugan K, Babu R, Jeyabalan D, Senthil Kumar N, Sivaramakrishnan S (1996) Antipupational effect of neem oil and neem seed kernel extract against mosquito larvae of Anopheles stephensi (Liston). J Ent Res 20:137–139

    Google Scholar 

  • Muthukrishnan J, Puspalatha E (2001) Effects of plant extracts on fecundity and fertility of mosquitoes. J Appl Entomol 125:31–35

    Article  Google Scholar 

  • Mwaiko GL (1992) Citrus peel oil extracts as mosquito larvae insecticides. East Afr Med J 69(4):223–226

    PubMed  CAS  Google Scholar 

  • Nagi S, Shaw PE, Veldhuis and MK (1977) Citrus Science and Technology. p 427–62

  • Nagpal BN, Srivastava A, Valecha N, Sharma VP (2001) Repellent action of neem cream against Anopheles culicifacies and Culex quinquefasciatus. Curr Sci 80:1270

  • Nathan SS, Kalaivani K, Murugan K, Chung PG (2005) Effects of neem limonoids on malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop 96:47–55

    Article  PubMed  CAS  Google Scholar 

  • National Institute of Communicable Diseases (1990) Proceedings of the National Seminar on operation research on vector control in filariasis. New Delhi

  • Pancharoen C, Kulwichit W, Tantawichien T, Thisyakorn U, Thisyakorn C (2002) Dengue infection: a global concern. J Med Assoc Thai 85:25–33

    Google Scholar 

  • Park BS, Choi WS, Kim JH, Lee SE (2005) Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents. J Am Mosq Control Assoc 21:80–83

    Article  PubMed  CAS  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant Extracts against Aedes aegypti (Diptera: Culicide) and Poecili areticulata. Parasitol Res 108(5):1253–1263

    Article  PubMed  Google Scholar 

  • Phukan S, Kalita MC (2005) Phytopesticidal and repellent efficacy of Litsea salicifolia (Lauraceae) against Aedes aegypti and Culex quinquefasciatus. Indian J Exp Biol 43:472–474

    PubMed  CAS  Google Scholar 

  • Pitasawat B, Choochote W, Tuetun B, Tippawangkosal P, Kanjanapothi D, Jitpakdi A, Riyong D (2003) Repellency of aromatic turmeric Curcuma aromatica under laboratory and field conditions. J Vect Ecol 28(2):234–240

    Google Scholar 

  • Radhika W, Ankita R, Jasdeep K. S, Roopa S, Naim W, Sarita K (2012) Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti. Asian Pacific J Trop Biomed 152–155

  • Salvatore A, Borkosky S, Willink E, Bardon A (2004) Toxic effects of lemon peel constituents on Ceratitis capitata. J Chem Ecol 30:323–333

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Goto M, Hirose T (1996) Supercritical fluid extraction on semibatch mode for the removal of terpenes in citrus oils. Ind Eng Chem Res 35:1906–1911

    Article  CAS  Google Scholar 

  • Sattar A, Mahmud S (1992) Citrus oil, composition of monoterpenes of the peel oil of orange, kinnow, and lemon. Pak J Sci Ind Res 29:196–198

    Google Scholar 

  • Sharma VP (1996) Reemergence of malaria in India. Ind J Med Res 103:26–45

    CAS  Google Scholar 

  • Sharma VP, Ansari MA, Razdan RK (1993) Mosquito repellent action of neem (Azadirachta indica) oil. J Am Mosq Control Assoc 9:359–360

    PubMed  CAS  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2005) Larvicidal potential of Nerium indicum and Thuja oriertelis extracts against malaria and Japanese encephalitis vector. J Environ Biol 26(4):657–660

    PubMed  Google Scholar 

  • Shaw PE (1977) Essential oils. In: Nagy S, Shaw PE, Veldhuis MK (eds) Citrus science and technology. The AVI Publishing Co. Inc., Westport, CT, p 427

    Google Scholar 

  • Shell ER (1997) Resurgence of a deadly diseases. Atlantic Monthly. August: 45–60

  • Sheppard DC (1984) Toxicity of Citrus peel liquids to the house fly and red imported fire ant. J Agric Entomol 1:95–100

    Google Scholar 

  • Shrivastava G, Rogers M, Wszelaki A, Dilip R, Panthee FC (2010) Plant volatiles-based insect pest management in organic farming. Crit Rev Plant Sci 29(2):123–133

    Article  Google Scholar 

  • Singhi M, Joshi V, Dam PK (2006) Studies on Calotropis procera as larvicidal and repellent plant against vectors of dengue and DHF in Rajasthan, India. Annual Report 2005-06. Desert Medicine Research Center, Jodhpur, pp 24–28

    Google Scholar 

  • Snow RW et al (1999) Estimating mortality, morbidity, and disability due to malaria among Africa’s non-pregnant population. Bull World Health Organ 77:624–640

    PubMed  CAS  Google Scholar 

  • Su HCF, Speirs RD, Mahany PG (1972) Toxicity of Citrus oils to several stored-product insects laboratory evaluation. J Econ Entomol 65:1438–1441

    PubMed  CAS  Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 72:210–237

    Google Scholar 

  • Tyagi BK, Ramnath T, Shahi AK (1994) Evaluation of repellency effect of Tagetus minuta (Family: Compositae) against the vector mosquitoes Anopheles stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti L. Int Pest Control 39:48

    Google Scholar 

  • Venkatachalam MR, Jebanesan A (2001a) Larvicidal activity of Hydrocotyle javanica Thunb. (Apiaceae) extract against Culex quinquefasciatus. J Exp Zool India 4(1):99–101

    Google Scholar 

  • Venkatachalam MR, Jebanesan A (2001b) Repellent activity of Ferronia elephantum Corr. (Rutaceae) leaf extract against Aedes aegypti. Bioresour Technol 76(3):287–288

    Article  PubMed  CAS  Google Scholar 

  • Wilder-Smith A, Chen LH, Massad E, Wilson ME (2009) Threat of dengue to blood safety in dengue-endemic countries. Emerg Infect Dis 15:8–11

    Article  PubMed  Google Scholar 

  • World Health Organization (1981) Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides: diagnostic test. WHO/VBC, Geneva, pp 81–807

    Google Scholar 

  • World Health Organization (1995) Vector control for malaria and other mosquito-borne diseases, in WHO Technical Report Series 857, vol 857. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2010) Global information system on alcohol and health. Geneva, (www.who.int/globalatlas/DataQuery/default.asp)

  • Yadav R, Srivastava VK, Chandra R, Singh A (2002) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34(4):264–269

    PubMed  Google Scholar 

  • Yang YC, Lee EH, Lee HS, Lee DK, Ahn YJ (2004) Repellency of aromatic medicinal plant extracts and a steam distillate to Aedes aegypti. J Am Mosq Control Assoc 20:146–149

    PubMed  Google Scholar 

  • Yit HS, Ku-Hua WV, Kumamoto JH, Axelrod MMS (1985) Isolation and identification of mosquito repellent in Artemesia vulgaris. J Chem Ecol 11:1297–1306

    Article  Google Scholar 

  • Zhou X, Li XD, Yuan JZ, Tang ZH, Liu WY (2000) Toxicity of cinnamomin a new type II ribosome—inactivates protein to bollworm and mosquito. Insect Biochem Mol Biol 30(3):259–264

    Article  PubMed  CAS  Google Scholar 

  • Zipcode zoo (2012) Citrus. In: Flora of Pakistan Page 19. Published by Science Press (Beijing) and Missouri Botanical Garden Press. Online at EFloras.org. 18, April 2012

Download references

Acknowledgments

We thank to Dr. K. Sasikala, Professor and Head, Department of Zoology, Bharathiar University for the laboratory facilities provided. The authors are grateful to Mr. N. Muthukrishnan, Technician and Mr. A. Anbarasan, Lab Assistant, National Centre for Diseases Control (NCDC), Mettupalayam, Tamil Nadu for their helping mosquito collection and mosquito samples provided for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Kovendan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugan, K., Mahesh Kumar, P., Kovendan, K. et al. Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 111, 1757–1769 (2012). https://doi.org/10.1007/s00436-012-3021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3021-8

Keywords

Navigation