Skip to main content
Log in

Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function

  • Methods Paper
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The cerebellum regulates several motor functions through two main mechanisms, the cerebellum-brain inhibition (CBI) and the motor surround inhibition (MSI). Although the exact cerebellar structures and functions involved in such processes are partially known, Purkinje cells (PC) and their surrounding interneuronal networks may play a pivotal role concerning CBI and MSI. Cerebellar transcranial alternating current stimulation (tACS) has been proven to shape specific cerebellar components in a feasible, safe, effective, and non-invasive manner. The aim of our study was to characterize the cerebellar structures and functions subtending CBI and MSI using a tACS approach. Fifteen healthy individuals underwent a cerebellar tACS protocol at 10, 50, and 300 Hz, or a sham-tACS over the right cerebellar hemisphere. We measured the tACS aftereffects on motor-evoked potential (MEP) amplitude, CBI induced by tACS (tiCBI) at different frequencies, MSI, and hand motor task performance. None of the participants had any side effect related to tACS. After 50-Hz tACS, we observed a clear tiCBI-50Hz weakening (about +30%, p < 0.001) paralleled by a MEP amplitude increase (about +30%, p = 0.001) and a reduction of the time required to complete some motor task (about −20%, p = 0.01), lasting up to 30 min. The 300-Hz tACS induced a selective, specific tiCBI-300Hz and tiCBI-50Hz modulation in surrounding muscles (about −15%, p = 0.01) and MSI potentiation (about +40%, p < 0.001). The 10-Hz tACS and the sham-tACS were ineffective (p > 0.6). Our preliminary data suggest that PC may represent the last mediator of tiCBI and that the surrounding interneuronal network may have an important role in updating MSI, tiCBI, and M1 excitability during tonic muscle contraction, by acting onto the PC. The knowledge of these neurophysiological issues offers new cues to design innovative, non-invasive neuromodulation protocols to shape cerebellar–cerebral functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali MM, Sellers KK, Fröhlich F (2013) Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci 33:11262–11275

    Article  CAS  PubMed  Google Scholar 

  • Amassian VE, Maccabee PJ (2006) Transcranial magnetic stimulation. Conf Proc IEEE Eng Med Biol Soc 1:1620–1623

    CAS  PubMed  Google Scholar 

  • Antal A, Herrmann CS (2016) Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast 2016:3616807

    Article  PubMed  PubMed Central  Google Scholar 

  • Antal A, Paulus W (2013) Transcranial alternating current stimulation (tACS). Front Human Neurosci 7:317

    Article  Google Scholar 

  • Antonenko D, Faxel M, Grittner U, Lavidor M, Flöel A (2016) Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. Neural Plast 2016:4274127

    Article  PubMed  PubMed Central  Google Scholar 

  • Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681

    Article  CAS  PubMed  Google Scholar 

  • Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591(7):1987–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck S, Hallett M (2011) Surround inhibition in the motor system. Exp Brain Res 210:165–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck S, Richardson SP, Shamim EA, Dang N, Schubert M, Hallett M (2008) Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci 28:10363–10369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berényi A, Belluscio M, Mao D, Buzsáki G (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337:735–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bestmann S (2008) The physiological basis of transcranial magnetic stimulation. Trends Cogn Sci 12:81–83

    Article  PubMed  Google Scholar 

  • Block H, Celnik P (2013) Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning. Cerebellum 12:781–793

    Article  PubMed  PubMed Central  Google Scholar 

  • Bortoletto M, Pellicciari MC, Rodella C, Miniussi C (2015) The interaction with task-induced activity is more important than polarization: a tDCS study. Brain Stimul 8(2):269–276

    Article  PubMed  Google Scholar 

  • Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA 107:8452–8456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookhart JM, Blaachly PH (1952) Cerebellar unit responses to DC polarization. Am J Physiol 171:711

    Google Scholar 

  • Brunamonti E, Chiricozzi FR, Clausi S, Olivito G, Giusti MA, Molinari M et al (2014) Cerebellar damage impairs executive control and monitoring of movement generation. PLoS One 9:e85997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K et al (2016) Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum. doi:10.1007/s12311-016-0763-3

    PubMed Central  Google Scholar 

  • Canolty RT, Soltani M, Dalal SS, Edwards E, Dronkers NF, Nagarajan SS, Kirsch HE, Barbaro NM, Knight RT (2007) Spatiotemporal dynamics of word processing in the human brain. Front Neurosci 151(1):185–196

    Article  Google Scholar 

  • Cerminara NL, Lang EJ, Sillitoe RV, Apps R (2015) Re-defining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 16(2):79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CY, Nicholson C (1986) Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol 371:89–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chothia M, Doeltgen S, Bradnam LV (2016) Anodal cerebellar direct current stimulation reduces facilitation of propriospinal neurons in healthy humans. Brain Stimul 9(3):364–371

    Article  PubMed  Google Scholar 

  • Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41.

    Article  PubMed  Google Scholar 

  • D’Angelo E, Solinas S, Mapelli J, Gandolfi D, Mapelli L, Prestori F (2013) The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front Neural Circ 7:93

    Google Scholar 

  • Dalal S, Osipova D, Bertrand O, Jerbi K (2013) Oscillatory activity of the human cerebellum: the intracranial electrocerebellogram revisited. Neurosci Biobehav Rev 37:585–593

    Article  PubMed  Google Scholar 

  • Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R (2004) Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol 557:689–700

    Article  CAS  PubMed  Google Scholar 

  • Deans JK, Powell AD, Jefferys JG (2007) Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol 583:555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A et al (1998a) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508:625–633

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A et al (1998b) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268

  • Di Lazzaro V, Oliviero A, Mazzone P, Pilato F, Saturno E, Insola A et al (2002) Direct demonstration of long latency cortico-cortical inhibition in normal subjects and in a patient with vascular parkinsonism. Clin Neurophysiol 113:1673–1679

    Article  CAS  PubMed  Google Scholar 

  • Fazio R, Dunham KJ, Griswold S, Denney RL (2013) An Improved Measure of Handedness: the Fazio Laterality Inventory. Appl Neuropsychol Adult 20(3):197–202

    Google Scholar 

  • Fellows SJ, Ernst J, Schwarz M, Töpper R, Noth J (2001) Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol 112(10):1793–1802

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, Zago S, Barbieri S, Priori A (2008) Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci 20:1687–1697

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, Mameli F, Rosa M, Giannicola G, Zago S, Priori A (2013) Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum 12:485–492

    Article  CAS  PubMed  Google Scholar 

  • Feurra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S (2011) Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci 31(34):12165–12170

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67:129–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuggetta G, Fiaschi A, Manganotti P (2005) Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study. Neuroimage 27:896–908

    Article  PubMed  Google Scholar 

  • Galea JM, Jayaram G, Ajagbe L, Celnik P (2009a) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29(28):9115–9122

  • Galea JM, Jayaram G, Ajagbe L, Celnik P (2009b) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29:9115–9122

  • Gauthier A, Mollica A, Moruzzi G (1955) Increased barbiturate resistance of bulbo-reticular responses to localized polarization of the cerebellar cortex. Boll Soc Ital Biol Sper 31:1217–1218

    CAS  PubMed  Google Scholar 

  • Grasselli G, Hansel C (2014) Cerebellar long-term potentiation: cellular mechanisms and role in learning. Int Rev Neurobiol 117:39–51

    Article  PubMed  Google Scholar 

  • Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U (2014) Non-invasive cerebellar stimulation—a consensus paper. Cerebellum 13(1):121–138

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, Ferrucci R, Fregni F, Galea JM, Hamada M, Manto M, Miall RC, Morales-Quezada L, Pope PA, Priori A, Rothwell J, Tomlinson SP, Celnik P (2016) Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist 22(1):83–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, Rothwell JC (2012) Cerebellar modulation of human associative plasticity. J Physiol 590:2365–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfrich RF, Knepper H, Nolte G, Strüber D, Rach S, Herrmann CS, Schneider TR, Engel AK (2014a) Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol 12:e1002031

  • Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014b) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 24(3):333–339

  • Herrmann CS, Rach S, Neuling T, Strüber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Human Neurosci 7:279

    Article  Google Scholar 

  • Hirose S, Jimura K, Kunimatsu A, Abe O, Ohtomo K, Miyashita Y et al (2014) Changes in cerebro-cerebellar interaction during response inhibition after performance improvement. Neuroimage 99:142–148

    Article  PubMed  Google Scholar 

  • Hull CA, Chu Y, Thanawala M, Regehr WG (2013) Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells. J Neurosci 33(14):5895–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaram G, Galea JM, Bastian AJ, Celnik P (2011) Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex 21(8):1901–1909

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A (2012) Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol 107:2950–2957

    Article  PubMed  PubMed Central  Google Scholar 

  • Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P (2012) Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol 22:403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121:1437–1449

    Article  PubMed  Google Scholar 

  • Kassavetis P, Hoffland BS, Saifee TA, Bhatia KP, van de Warrenburg BP, Rothwell JC, Edwards MJ (2011) Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res 209(3):437–442

    Article  PubMed  Google Scholar 

  • Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899–4912

    CAS  PubMed  Google Scholar 

  • Khan B, Hodics T, Hervey N, Kondraske G, Stowe AM, Alexandrakis G (2013) Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation. J Biomed Opt 18(11):116003

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim CH, Oh SH, Lee JH, Chang SO, Kim J, Kim SJ (2012) Lobule-specific membrane excitability of cerebellar Purkinje cells. J Physiol 590(2):273–288

    Article  CAS  PubMed  Google Scholar 

  • Knöpfel T, Grandes P (2002) Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. Cerebellum 1(1):19–26

    Article  PubMed  Google Scholar 

  • Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S et al (2008) Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol 119:2559–2569

    Article  PubMed  Google Scholar 

  • Kukke SN, Paine RW, Chao C, de Campos AC, Hallett M (2014) Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation. J Clin Neurophysiol 31(3):246–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisman JE, Idiart MA (1995) Storage of 7+/-2 short-term memories in oscillatory subcycles. Science 267(5203):1512–1515

    Article  CAS  PubMed  Google Scholar 

  • Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y et al (2005) Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci 8:202–211

    Article  CAS  PubMed  Google Scholar 

  • Lu MK, Tsai CH, Ziemann U (2012) Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Front Hum Neurosci 6:260

    Article  PubMed  PubMed Central  Google Scholar 

  • Maex R, De Schutter E (1998) Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521–2537

    CAS  PubMed  Google Scholar 

  • Manganotti P, Formaggio E, Storti SF, De Massari D, Zamboni A, Bertoldo A, Fiaschi A, Toffolo GM (2012) Time–frequency analysis of short-lasting modulation of EEG induced by intracortical and transcallosal paired TMS over motor areas. J Neurophysiol 107(9):2475–2484

    Article  PubMed  Google Scholar 

  • Manoli Z, Grossman N, Samaras T (2012) Theoretical investigation of transcranial alternating current stimulation using realistic head model. Conf Proc IEEE Eng Med Biol Soc 2012:4156–4159

    CAS  PubMed  Google Scholar 

  • Manto M (2010) Cerebellar disorders. A practical approach to diagnosis and management. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M et al (2012) Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Mapelli L, Pagani M, Garrido JA, D’Angelo E (2015) Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci 9:169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta AR, Brittain JS, Brown P (2014) The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J Neurosci 34:7501–7508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629

    Article  PubMed  Google Scholar 

  • Mittmann W, Koch U, Hausser M (2005) Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol 563:369–378

    Article  CAS  PubMed  Google Scholar 

  • Moliadze V, Antal A, Paulus W (2010) Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol 588(Pt 24):4891–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moliadze V, Atalay D, Antal A, Paulus W (2012) Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul 5:505–511

    Article  PubMed  Google Scholar 

  • Mollica A, Moruzzi G, Naquet R (1953a) Discharge of bulbo-reticular impulses and electroencephalographic reactions in awakening induced by positive polarization of the cerebellar cortex. Boll Soc Ital Biol Sper 29:435–436

  • Mollica A, Moruzzi G, Naquet R (1953b) Effects of positive polarization of the cerebellar cortex on the discharge of bulbo-reticular impulses and on decerebrate rigidity. Boll Soc Ital Biol Sper 29:401–402

  • Mollica A, Moruzzi G, Naquet R (1953c) Reticular discharges induced by polarization of the cerebellum, their relation with postural tonis and the arousal reaction. Electroencephalogr Clin Neurophysiol 5:571–584

  • Nardone R, Höller Y, Taylor A, Thomschewski A, Orioli A, Frey V, Trinka E, Brigo F (2015) Noninvasive spinal cord stimulation: technical aspects and therapeutic applications: spinal cord stimulation. Neuromodulation 18:580–591

    Article  PubMed  Google Scholar 

  • Naro A, Russo M, Leo A, Cannavò A, Manuli A, Bramanti A, Bramanti P, Calabrò RS (2016) Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness: a marker of covert cognition? Clin Neurophysiol 127:1845–1854

    Article  PubMed  Google Scholar 

  • Nightingale NR, Goodridge VD, Sheppard RJ, Christie JL (1983) The dielectric properties of the cerebellum, cerebrum and brain stem of mouse brain at radiowave and microwave frequencies. Phys Med Biol 28:897–903

    Article  CAS  PubMed  Google Scholar 

  • Oliveri M, Koch G, Torriero S, Caltagirone C (2005) Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett 376:188–193

    Article  CAS  PubMed  Google Scholar 

  • Ottersen OP (1993) Neurostransmitters in the cerebellum. Rev Neurol (Paris) 149:629–636

    CAS  Google Scholar 

  • Oulad Ben Taib N, Manto M (2013) Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plast 2013:613197

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, Buzsáki G (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30:11476–11485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panyakaew P, Cho HJ, Srivanitchapoom P, Popa T, Wu T, Hallett M (2016) Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation. Eur J Neurosci 43:1075–1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P (2014) Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol 125:577–584

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237

    Article  CAS  PubMed  Google Scholar 

  • Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990

    CAS  PubMed  Google Scholar 

  • Pinto AD, Chen R (2001) Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res 140:505–510

    Article  CAS  PubMed  Google Scholar 

  • Pitcher JB, Doeltgen SH, Goldsworthy MR, Schneider LA, Vallence AM, Smith AE, Semmler JG, McDonnell MN, Ridding MC (2015) A comparison of two methods for estimating 50 % of the maximal motor evoked potential. Clin Neurophysiol 126:2337–2341

    Article  PubMed  Google Scholar 

  • Pompeiano O, Cotti E (1959a) Opposite effects exercised by polarization of various vermian cerebellar lamellae on a single deitersian unit. Boll Soc Ital Biol Sper 35:387–388

  • Pompeiano O, Cotti E (1959b) Topographic localization of the deitersian response to polarization of the vermian cerebellar cortex of the anterior lobe. Boll Soc Ital Biol Sper 35:385–386

  • Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, Meunier S, Kishore A (2013) Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex 23:305–314

    Article  CAS  PubMed  Google Scholar 

  • Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R (2014) Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol 592(16):3345–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2:215–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, Bikson M (2013) Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol 591(10):2563–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampersad SM, Janssen AM, Lucka F, Aydin U, Lanfer B, Lew S et al (2014) Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng 22:441–452

    Article  PubMed  Google Scholar 

  • Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci 7:687.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586(2):325–351

    Article  CAS  PubMed  Google Scholar 

  • Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M (2009) Natural frequencies of human corticothalamic circuits. J Neurosci 29:7679–7685

    Article  CAS  PubMed  Google Scholar 

  • Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol 126:1071–1107

    Article  CAS  PubMed  Google Scholar 

  • Rubia K, Smith AB, Taylor E, Brammer M (2007) Linear agecorrelated functional development of right inferior frontostriato- cerebellar networks during response inhibition and anterior cingulate during error-related processes. Hum Brain Mapp 28:1163–1177

    Article  PubMed  Google Scholar 

  • Sadnicka A, Kassavetis P, Saifee TA, Pareés I, Rothwell JC, Edwards MJ (2013) Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. Int J Neurosci 123(6):425–432

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  • Shah B, Nguyen TT, Madhavan S (2013) Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimul 6:966–968

    Article  PubMed  Google Scholar 

  • Shinoda Y, Kakei S, Futami T, Wannier T (1993) Thalamocortical organization in the cerebello-thalamo-cortical system. Cereb Cortex 3:421–429

    Article  CAS  PubMed  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Smith AM, Walker LA, Freedman MS, De Meulemeester C, Hogan MJ, Cameron I (2009) fMRI investigation of disinhibition in cognitively impaired patients with multiple sclerosis. J Neurol Sci 281:58–63

    Article  PubMed  Google Scholar 

  • Sohn YH, Hallett M (2004) Surround inhibition in human motor system. Exp Brain Res 158:397–404

    Article  PubMed  Google Scholar 

  • Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 29(16):5202–5206

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Harada M, Arai M, Hirata K (2003) Cognitive dysfunction in cortical cerebellar atrophy correlates with impairment of the inhibitory system. Neuropsychobiology 47:206–11.

    Article  PubMed  Google Scholar 

  • Tomlinson SP, Davis NJ, Bracewell RM (2013) Brain stimulation studies of non-motor cerebellar function: a systematic review. Neurosci Biobehav Rev 37:766–789

    Article  PubMed  Google Scholar 

  • Torriero S, Oliveri M, Koch G, Lo Gerfo E, Salerno S, Ferlazzo F et al (2011) Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J Cogn Neurosci 23:338–348

    Article  PubMed  Google Scholar 

  • Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD (1991) Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol 441:57–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1994) Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann Neurol 36:618–624

    Article  CAS  PubMed  Google Scholar 

  • Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1995) Magnetic stimulation over the cerebellum in humans. Ann Neurol 37:703–713

    Article  CAS  PubMed  Google Scholar 

  • Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, Kanazawa I (1997) Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol 104:453–458

    Article  CAS  PubMed  Google Scholar 

  • Van Der Werf YD, Sadikot AF, Strafella AP, Paus T (2006) The neural response to transcranial magnetic stimulation of the huaman motor cortex. Exp Brain Res 175:246–255

    Article  Google Scholar 

  • Vos BP, Maex R, Volny-Luraghi A, De Schutter E (1999a) Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 19:RC6

  • Vos BP, Volny-Luraghi A, De Schutter E (1999b) Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci 11:2621–2634

  • Wang DJ, Su LD, Wang YN, Yang D, Sun CL, Zhou L, Wang XX, Shen Y (2014) Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci 34(6):2355–2364

    Article  CAS  PubMed  Google Scholar 

  • Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC (1996) Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol 101(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • Wolf SL, Lecraw DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head injured patients. Exp Neurol 104:125–132

    Article  CAS  PubMed  Google Scholar 

  • Yedlin M, Kwan H, Murphy JT, Nguyen-Huu H, Wong YC (1974) Electrical conductivity in cat cerebellar cortex. Exp Neurol 43:555–569

    Article  CAS  PubMed  Google Scholar 

  • Zaehle T, Rach S, Herrmann CS (2010) Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS ONE 5(11):e13766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A, Siebner HR, Classen J, Cohen LG, Rothwell J (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1:164–182

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Salvatore Calabrò.

Ethics declarations

Funding

No funding to be reported.

Conflict of interest

Each author declares that he/she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naro, A., Bramanti, A., Leo, A. et al. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct Funct 222, 2891–2906 (2017). https://doi.org/10.1007/s00429-016-1355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1355-1

Keywords

Navigation