Skip to main content
Log in

Surround inhibition in the motor system

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Surround inhibition is a physiological mechanism to focus neuronal activity in the central nervous system. This so-called center-surround organization is well known in sensory systems, where central signals are facilitated and eccentric signals are inhibited in order to sharpen the contrast between them. There is evidence that this mechanism is relevant to skilled motor behavior, and it is deficient, for example, in the affected primary motor cortex of patients with focal hand dystonia (FHD). While it is still not fully elucidated how surround inhibition is generated in healthy subjects, the process is enhanced with handedness and task difficulty indicating that it may be an important mechanism for the performance of individuated finger movements. In FHD, where involuntary overactivation of muscles interferes with precise finger movements, a loss of intracortical inhibition likely contributes to the loss of surround inhibition. Several intracortical inhibitory networks are modulated differently in FHD compared with healthy subjects, and these may contribute to the loss of surround inhibition. Surround inhibition can be observed and assessed in the primary motor cortex. It remains unclear, however, if the effects are created in the cortex or if they are derived from, or supported by, motor signals that come from the basal ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Andersen P, Hagan PJ, Phillips CG, Powell TP (1975) Mapping by microstimulation of overlapping projections from area 4 to motor units of the baboon’s hand. Proc R Soc Lond B Biol Sci 188:31–36

    Article  PubMed  CAS  Google Scholar 

  • Angelucci A, Levitt JB, Lund JS (2002) Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog Brain Res 136:373–388

    Article  PubMed  Google Scholar 

  • Baker SN, Olivier E, Lemon RN (1998) An investigation of the intrinsic circuitry of the motor cortex of the monkey using intracortical microstimulation. Exp Brain Res 123:397–411

    Article  PubMed  CAS  Google Scholar 

  • Bara-Jimenez W, Catalan MJ, Hallett M, Gerloff C (1998) Abnormal Somatosensory Homunculus in Dystonia of the hand. Ann Neurol 44(5):828–830

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Hallett M (2010) Surround inhibition is modulated by task difficulty. Clin Neurophysiol 121(1):98–103

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Pirio Richardson S, Shamim EA, Dang N, Schubert M, Hallett M (2008) Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci 28(41):10363–10369

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Shamim EA, Pirio Richardson S, Schubert M, Hallett M (2009a) Interhemispheric inhibition contributes to reduced surround inhibition in dystonia. Eur J Neurosci 29(8):1634–1640

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Schubert M, Richardson SP, Hallett M (2009b) Surround inhibition depends on the force exerted and is abnormal in focal hand dystonia. J Appl Physiol 107(5):1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Houdayer E, Pirio Richardson S, Hallett M (2009c) Premotor-motor inhibition is increased at rest in patients with focal hand dystonia. Brain Stimul 2(4):208–214

    Article  PubMed  Google Scholar 

  • Blakemore C, Carpenter RH, Georgeson MA (1970) Lateral inhibition between orientation detectors in the human visual system. Nature 228:37–39

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Kumar S, Garg RR, Lang AE (2001) Impairment of motor cortex activation and deactivation in Parkinson’s disease. Clin Neurophysiol 112:600–607

    Article  PubMed  CAS  Google Scholar 

  • Collins R (1978) Use of cortical circuits during focal penicillin seizures: an autoradiographic study with [14C] Deoxyglucose. Brain Res 150:487–501

    Article  PubMed  CAS  Google Scholar 

  • Conte A, Gilio F, Iezzi E, Frasca V, Inghilleri M, Berardelli A (2007) Attention influences the excitability of cortical motor areas in healthy humans. Exp Brain Res 182(1):109–117

    Article  PubMed  Google Scholar 

  • Denny-Brown D (1967) The fundamental organization of motor behavior. In: (Yahr M, Purpura D et al (eds) Neurophysiological basis of normal and abnormal motor activities. Raven, New York, pp 415–442

    Google Scholar 

  • Duque J, Murase N, Celnik P, Hummel F, Harris-Love M, Mazzoccio R, Olivier E, Cohen LG (2007) Intermanual Differences in movement-related interhemispheric inhibition. J Cogn Neurosci 19:204–213

    Article  PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    PubMed  CAS  Google Scholar 

  • Godaux E, Koulischer D, Jacquy J (1992) Parkinsonian bradykinesia is due to depression in the rate of rise of muscle activity. Ann Neurol 31:93–100

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831

    Article  PubMed  CAS  Google Scholar 

  • Hallett M (2003) Surround inhibition. Suppl Clin Neurophysiol 56:153–159

    Article  PubMed  Google Scholar 

  • Hallett M (2004) Dystonia: abnormal movements result from loss of inhibition. Adv Neurol 94:1–9

    PubMed  Google Scholar 

  • Hallett M (2006) Pathophysiology of writer’s cramp. Hum Mov Sci 25:454–463

    Article  PubMed  Google Scholar 

  • Hallett M, Khoshbin S (1980) A physiological mechanism of bradykinesia. Brain 103:301–314

    Article  PubMed  CAS  Google Scholar 

  • Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259:813–821

    Article  Google Scholar 

  • Huntley GW, Jones EG (1991) Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. J Neurophysiol 66:390–413

    PubMed  CAS  Google Scholar 

  • Jedynak PC, Tranchant C, de Beyl DZ (2001) Prospective clinical study of writer’s cramp. Mov Disord 16:494–499

    Article  PubMed  CAS  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC et al (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519

    CAS  Google Scholar 

  • Landgren S, Phillips CG, Porter R (1962) Cortical fields of origin of the monosynaptic pyramidal pathways to some alpha motoneurones of the baboon’s hand and forearm. J Physiol 161:112–125

    PubMed  CAS  Google Scholar 

  • Liepert J, Classen J, Cohen LG, Hallett M (1998) Task-dependent changes of intracortical inhibition. Exp Brain Res 118:421–426

    Article  PubMed  CAS  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  PubMed  CAS  Google Scholar 

  • Murase N, Duque J, Mazzoccio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409

    Article  PubMed  Google Scholar 

  • Nauta WJH, Mehler WH (1966) Projections of the Ientiforrn nucleus in the monkey. Brain Res 1:3–42

    Article  PubMed  CAS  Google Scholar 

  • Parent A, De Bellefeuille L (1982) Organization of efferent Projections from the internalsegment of globus pallidus in primate as revealed by a fluorescenceretrograde labelling method. Brain Res 245:201–213

    Article  PubMed  CAS  Google Scholar 

  • Pirio Richardson S, Bliem B, Voller B, Dang N, Hallett M (2009) Long-latency afferent inhibition during phasic finger movement in focal hand dystonia. Exp Brain Res 193:173–179

    Article  PubMed  Google Scholar 

  • Quartarone A, Bagnato S, Rizzo V, Siebner HR, Dattola V, Scalfari A, Morgante F, Battaglia F, Romano M, Girlanda P (2003) Abnormal associative plasticity of the human motor cortex in writer’s cramp. Brain 126(Pt 12):2586–2596

    Article  PubMed  Google Scholar 

  • Richardson SP, Bliem B, Lomarev M, Shamim EA, Dang N, Hallett M (2008) Changes in short afferent inhibition during phasic movement in focal dystonia. Muscle Nerve 37(3):358–363

    Article  PubMed  Google Scholar 

  • Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C et al (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123:394–403

    Article  PubMed  Google Scholar 

  • Schieber MH (1991) Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits. J Neurophysiol 65:1381–1391

    PubMed  CAS  Google Scholar 

  • Schieber MH, Hibbard LS (1993) How somatotopic is the motor cortex hand area? Science 261:489–492

    Article  PubMed  CAS  Google Scholar 

  • Schieber MH, Poliakov AV (1998) Partial inactivation of the primary motor cortex hand area: effects on individuated finger movements. J Neurosci 18:9038–9054

    PubMed  CAS  Google Scholar 

  • Schneider C, Devanne H, Lavoie BA, Capaday C (2002) Neural mechanisms involved in the functional linking of motor cortical points. Exp Brain Res 146:86–94

    Article  PubMed  CAS  Google Scholar 

  • Shin HW, Kang SY, Sohn YH (2007) Disturbed surround inhibition in preclinical parkinsonism. Clin Neurophysiol 118:2176–2179

    Article  PubMed  Google Scholar 

  • Shin HW, Sohn YH, Hallett M (2009) Hemispheric asymmetry of surround inhibition in the human motor system. Clin Neurophysiol 120:816–819

    Article  PubMed  Google Scholar 

  • Sohn YH, Hallett M (2004a) Disturbed surround inhibition in focal hand dystonia. Ann Neurol 56:595–599

    Article  PubMed  Google Scholar 

  • Sohn YH, Hallett M (2004b) Surround inhibition in human motor system. Exp Brain Res 158:397–404

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3):572–584

    Article  PubMed  Google Scholar 

  • Stinear CM, Byblow WD (2004) Impaired modulation of intracortical inhibition in focal hand dystonia. Cereb Cortex 14:555–561

    Article  PubMed  Google Scholar 

  • Tamburin S, Manganotti P, Marzi CA, Fiaschi A, Zanette G (2002) Abnormal somatotopic arrangement of sensorimotor interactions in dystonic patients. Brain 125:2719–2730

    Article  PubMed  Google Scholar 

  • Tamburin S, Fiaschi A, Andreoli A, Marani S, Zanette G (2005) Sensorimotor integration to cutaneous afferents in humans: the effect of the size of the receptive field. Exp Brain Res 167(3):362–369

    Article  PubMed  Google Scholar 

  • Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguiere F, Fiaschi A (2000) Abnormal sensory integration of a dual somatosensory input in dystonia. Brain 123:42–50

    Article  PubMed  Google Scholar 

  • Weise D, Schramm A, Stefan K, Wolters A, Reiners K, Naumann M, Classen J (2006) The two sides of associative plasticity in writer’s cramp. Brain 129:2709–2721

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multifinger force production. Exp Brain Res 131:187–195

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Stein RB (1999) Interaction of the Jendrassik maneuver with segmental presynaptic inhibition. Exp Brain Res 124:474–480

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U (2004) TMS and drugs. Clin Neurophsiol 115:1717–1729

    Article  CAS  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding MC (1996) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496(3):873–881

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by the NINDS Intramural Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hallett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, S., Hallett, M. Surround inhibition in the motor system. Exp Brain Res 210, 165–172 (2011). https://doi.org/10.1007/s00221-011-2610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2610-6

Keywords

Navigation