Skip to main content
Log in

The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes.

The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MDA:

Malondialdehyde

REL:

Relative electrical leakage

TF:

Transcription factor

Tu:

Sodium tungstate

References

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors: jack of many trades in plants. Plant Signal Behav 9:e27700–e27700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrero JM, Piqueras P, Gonzalez-Guzman M, Serrano R, Rodriguez PL, Ponce MR, Micol JL (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 56:2071–2083

    Article  CAS  PubMed  Google Scholar 

  • Burssens S, Himanen K, van de Cotte B, Beeckman T, Van Montagu M, Inze D, Verbruggen N (2000) Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211:632–640

    Article  CAS  PubMed  Google Scholar 

  • Cai RH, Zhao Y, Wang YF, Lin YX, Peng XJ, Li Q, Chang YW, Jiang HY, Xiang Y, Cheng BJ (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Organ Culture 119:565–577

    Article  CAS  Google Scholar 

  • Cao YP, Han YH, Li DH, Lin Y, Cai YP (2016) MYB transcription factors in Chinese pear (Pyrus bretschneideri Rehd.): genome-wide identification, classification, and expression profiling during fruit development. Front. Plant Sci 7:577

    Google Scholar 

  • Chen H, Lai ZB, Shi JW, Xiao Y, Chen ZX, Xu XP (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 110:E1963–E1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu JQ, Chen Z (2013) Protein–protein interactions in the regulation of WRKY transcription factors. Mol Plant 6:287–300

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Hong CY, Cheng D, Zhang GQ, Zhu DD, Chen YH, Tan MP (2017) The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochem Biophys Res Commun 482:1504–1510

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Genet Genom 244:563–571

    CAS  Google Scholar 

  • Jiang YQ, Yang B, Deyholos MK (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genom 282:503–516

    Article  CAS  Google Scholar 

  • Jiang YJ, Liang G, Yu DQ (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107:2355–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyster M, Klein A, Ludidi N (2012) Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide. Plant Signal Behav 7:349–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagace M, Matton DP (2004) Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219:185–189

    Article  CAS  PubMed  Google Scholar 

  • Li S, Fu Q, Huang W, Yu D (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683–693

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Zhou X, Chen LG, Huang WD, Yu DQ (2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 29:475–483

    Article  CAS  PubMed  Google Scholar 

  • Li DF, Zhang YQ, Hu XN, Shen XY, Ma L, Su Z, Wang T, Dong JL (2011a) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MR, Lin XJ, Li HQ, Pan XP, Wu GJ (2011b) Overexpression of AtNHX5 improves tolerance to both salt and water stress in rice (Oryza sativa L.). Plant Cell Tissue Organ Culture 107:283–293

    Article  CAS  Google Scholar 

  • Li H, Gao Y, Xu H, Dai Y, Deng DQ, Chen JM (2013) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207–216

    Article  CAS  Google Scholar 

  • Li PL, Song AP, Gao CY, Wang LX, Wang YJ, Sun J, Jiang JF, Chen FD, Chen SM (2015) Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Rep 34:1365–1378

    Article  CAS  PubMed  Google Scholar 

  • Liu HY, Yang WL, Liu DC, Han YP, Zhang AM, Li SH (2011) Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 38:417–427

    Article  CAS  PubMed  Google Scholar 

  • Liu JF, Ding J, Yuan BF, Feng YQ (2014) Magnetic solid phase extraction coupled with in situ derivatization for the highly sensitive determination of acidic phytohormones in rice leaves by UPLC–MS/MS. Analyst 139:5605–5613

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Bai X, Sun XL, Zhu D, Liu BH, Ji W, Cai H, Cao L, Wu J, Hu MR, Liu X, Tang LL, Zhu YM (2013) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J Exp Bot 64:2155–2169

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CY, Lee JH, Yoo JH, Moon BC, Choi MS, Kang YH, Lee SM, Kim HS, Kang KY, Chung WS, Lim CO, Cho MJ (2005) WRKY group IId transcription factors interact with calmodulin. FEBS Lett 579:1545–1550

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Lv HJ, Zhu XL, Meng C, Quan TY, Wang MC, Xia GM (2013) Ectopic expression of a wheat WRKY transcription factor gene TaWRKY71-1 results in hyponastic leaves in Arabidopsis thaliana. PLoS One 8:e63033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren XZ, Chen ZZ, Liu Y, Zhang HR, Zhang M, Liu QA, Hong XH, Zhu JK, Gong ZZ (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63:417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28:123–133

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10:2–11

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen YH, Godlewski J, Bronisz A, Zhu J, Comb MJ, Avruch J, Tzivion G (2003) Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding. Mol Biol Cell 14:4721–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi WN, Hao LL, Li J, Liu DD, Guo XQ, Li H (2014) The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Rep 33:483–498

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Hu W, Zhou R, Wang L, Wang X, Wang Q, Feng Z, Li Y, Qiu D, He G, Yang G (2015) The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Rep 34:23–35

    Article  CAS  PubMed  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi P, Rabara RC, Langum TJ, Boken AK, Rushton DL, Boomsma DD, Rinerson CI, Rabara J, Reese RN, Chen X, Rohila JS, Rushton PJ (2012) The WRKY transcription factor family in Brachypodium distachyon. BMC Genom 13:270

    Article  CAS  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146:1983–1995

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderauwera S, Vandenbroucke K, Inze A, van de Cotte B, Muhlenbock P, De Rycke R, Naouar N, Van Gaever T, Van Montagu MCE, Van Breusegem F (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 109:20113–20118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang XB, Zhang HW, Sun GL, Jin Y, Qiu LJ (2014) Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean. Gene 543:237–243

    Article  CAS  PubMed  Google Scholar 

  • Wang XB, Li DD, Jiang JJ, Dong ZR, Ma YS (2016) Soybean NAC gene family: sequence analysis and expression under low nitrogen supply. Biol Plant 61:473–482. doi:10.1007/s10535-016-0693-4

    Article  Google Scholar 

  • Wei KF, Chen J, Chen YF, Wu LJ, Xie DX (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Yang G, Komatsu S, Shen QJ (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231–242

    Article  CAS  PubMed  Google Scholar 

  • Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan HR, Jia HH, Chen XB, Hao LL, An HL, Guo XQ (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55:2060–2076

    Article  CAS  PubMed  Google Scholar 

  • Zhang SJ, Li N, Gao F, Yang AF, Zhang JR (2010) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455–465

    Article  CAS  Google Scholar 

  • Zhao L, Gao LP, Wang HX, Chen XT, Wang YS, Yang H, Wei CL, Wan XC, Xia T (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genom 13:75–98

    Article  CAS  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chuanxiao Xie from Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China, for offering us the maize and Arabidopsis seeds in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xiang or Beijiu Cheng.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

This work was supported by the National Key Research and Development Program (2017YFD0101205) and the Key Technologies Research and Development Program of Anhui Province (15czz03119).

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2017_2766_MOESM1_ESM.tif

Supplementary material 1 Fig. S1 Transcriptome analyses of WT and transgenic Arabidopsis plants overexpressing ZmWRKY17 gene. a The number of the significantly differentially expressed transcripts in WT and transgenic line (L10) after salt treatment. WT, wild type (untreated); WTNA, wild type treated with NaCl solution for 6 h; L10, transgenic line (untreated); L10NA, transgenic line treated with NaCl solution for 6 h. b Go analysis of wild Arabidopsis transcriptome after salt treatment in Solexa. c Go analysis of transgenic Arabidopsis transcriptome after salt treatment in Solexa (TIFF 10212 kb)

425_2017_2766_MOESM2_ESM.tif

Supplementary material 2 Fig. S2 Expression levels of stress-responsive genes in WT and two transgenic lines in response to salt stress. The induction of stress-responsive genes (RD29A, RD29B, RD22, KIN1, MYB101, NAC019 and NCED5) were measured by qRT-PCR analysis. Actin2 was used as the internal control. Data represent mean ± SD of three replicates (TIFF 9404 kb)

Supplementary material 3 (DOC 64 kb)

Supplementary material 4 (XLS 3657 kb)

Supplementary material 5 (XLS 57 kb)

Supplementary material 6 (XLS 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, R., Dai, W., Zhang, C. et al. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta 246, 1215–1231 (2017). https://doi.org/10.1007/s00425-017-2766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2766-9

Keywords

Navigation