Skip to main content
Log in

ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Drought, high salinity and low temperature are major abiotic stresses affecting growth of plants and can result in severe yield losses for economic crops. In plants, most abiotic stress responses are controlled at the transcriptional level which are regulated by transcription factors (TFs). TFs can be divided into different types and families according to their DNA-binding domains; among them, WRKY TF family is one of the most important superfamilies involve in plant’s abiotic stress response. Studying WRKY TFs, especially those of cultivated crops, can facilitate their molecular genetic modification. In this paper, a WRKY gene, designated as ZmWRKY33, was isolated and characterized from maize (Zea mays L.). ZmWRKY33, belonging to Group I WRKY gene, harbors one intron and encodes a predicted protein with 498 amino acids. Real-time PCR analyses were performed to determine the expression profiles of ZmWRKY33 under abiotic stress. Results showed that ZmWRKY33 was induced by high salt, dehydration, cold and ABA treatments. Overexpression of ZmWRKY33 in Arabidopsis activated stress-induced genes, for example, RD29A, under normal growth condition and improved salt stress tolerance under stress condition. These results suggest that ZmWRKY33 plays an important role in abiotic stress response of maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

EST:

Expressed sequence tag

MS:

Murashige and Skoog

PCR:

Polymerase chain reaction

PEG:

Polyethylene glycol

qRT-PCR:

Quantitative real-time PCR

RT-PCR:

Reverse transcriptase-polymerase chain reaction

TF:

Transcription factors

References

  • Chen WJ, Zhu T (2004) Networks of transcription factors with roles in environmental stress response. Trends Plant Sci 9:591–596

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Lai ZB, Shi JW, Xiao Y, Chen ZX, Xu XP (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281–296

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Zhao Y, Li T, Ren C, Liu Y, Wang M (2010) Cloning and characterization of a G protein β subunit gene responsive to plant hormones and abiotic stresses in Brassica napus. Plant Mol Biol Rep 28:450–459

    Article  CAS  Google Scholar 

  • Hara K, Yagi M, Kusano T, Sano H (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet 263:30–37

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Jiang YQ, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  PubMed  CAS  Google Scholar 

  • Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142:1180–1192

    Article  PubMed  CAS  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Interact 20:120–128

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Latchman DS (1997) Transcription factor: an overview. Int J Biochem Cell Biol 29:1305–1312

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Fu QT, Huang WD, Yu DQ (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683–693

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y et al (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  PubMed  CAS  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Qiu YP, Yu DQ (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  CAS  Google Scholar 

  • Rajendra B, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  Google Scholar 

  • Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49:827–842

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QXJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:2–5

    Article  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Wang XP, Liu T, Li CH, Zhao Z (2012) Gene expression profiles in maize (Zea mays L.) leaves inoculation with southern corn rust (Puccinia polysora Underw.). Acta Physiol Plant 34:997–1006

    Article  CAS  Google Scholar 

  • Wei KF, Chen J, Chen YF, Wu LJ, Xie DX (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in Maize. DNA Res 48:1–12

    Google Scholar 

  • Wu KL, Guo ZJ, Wang HH, Li J (2005) The WRKY Family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12:9–26

    Article  PubMed  CAS  Google Scholar 

  • Wu XL, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Zhang YJ, Wang LJ (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1–28

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Henriques R, Lin SS (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH, Yao QH, Chen JM (2009) Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep 42:486–492

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 31101093). This research was funded by the National Key Project of Transgenic Crops of China (2009ZX08002-011B), Natural science Research Project for colleges and universities in Jiangsu Province (No. 11KJB210005) and National Program on Key Basic Research Project (973 Program). It was also partially funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Gao or Jianmin Chen.

Additional information

Hua Li and Yong Gao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 711 kb)

Supplementary material 2 (JPEG 4604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Gao, Y., Xu, H. et al. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis . Plant Growth Regul 70, 207–216 (2013). https://doi.org/10.1007/s10725-013-9792-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9792-9

Keywords

Navigation