Skip to main content
Log in

Influence of thylakoid membrane lipids on the structure and function of the plant photosystem II core complex

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport.

The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DGDG:

Digalactosyldiacylglycerol

DM:

n-Dodecyl β-d-maltoside

DMBQ:

2,5-Dimethyl-p-benzoquinone

LHC:

Light-harvesting complex

MGDG:

Monogalactosyldiacylglycerol

OEC:

Oxygen-evolving complex

OJIP:

Fluorescence induction transient

PG:

Phosphatidylglycerol

PS:

Photosystem

SQDG:

Sulfoquinovosyldiacylglycerol

References

  • Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in photosystem II. Photosynth Res 84:173–180

    Article  PubMed  CAS  Google Scholar 

  • Ballottari M, Girardon J, Dall’Osto L, Bassi R (2012) Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes. Biochim Biophys Acta 1817:143–157

    Article  PubMed  CAS  Google Scholar 

  • Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34:619–631

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Nield J, Morris EP, Hankamer B (1999) Subunit positioning in photosystem II revisited. Trends Biochem Sci 24:43–45

    Article  PubMed  CAS  Google Scholar 

  • Barry BA (2011) Proton coupled electron transfer and redox active tyrosines in photosystem II. J Photochem Photobiol B 104:60–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rogner M (1995) Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92:175–179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta 1817:26–43

    Article  PubMed  CAS  Google Scholar 

  • Commet A, Boswell N, Yocum CF, Popelka H (2012) pH Optimum of the photosystem II H2O oxidation reaction: Effects of PsbO, the manganese-stabilizing protein, Cl retention, and deprotonation of a component required for O2 evolution activity. Biochemistry 51:3808–3818

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ, Barry BA, Sithole I, Babcock GT, McIntosh L (1988) Directed mutagenesis indicates that the donor to P680 + in photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry 27:9071–9074

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  PubMed  CAS  Google Scholar 

  • Dubertret G, Gerard-Hirne C, Tremolieres A (2002) Importance of trans3-hexadecenoic acid containing phosphatidylglycerol in the formation of the trimeric light-harvesting complex in Chlamydomonas. Plant Physiol Biochem 40:829–836

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Fotinou C, Kokkinidis M, Fritzsch G, Haase W, Michel H, Ghanotakis DF (1993) Characterization of a photosystem II core and its three-dimensional crystals. Photosynth Res 37:41–48

    Article  PubMed  CAS  Google Scholar 

  • French CS, Smith JH, Virgin HI, Airth RL (1956) Fluorescence-spectrum curves of chlorophylls, pheophytins, phycoerythrins, phycocyanins and hypericin. Plant Physiol 31:369–374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7:270–276

    Article  PubMed  CAS  Google Scholar 

  • Frommolt R, Goss R, Wilhelm C (2001) The de-epoxidase and epoxidase reactions of Mantoniella squamata (Prasinophyceae) exhibit different substrate-specific reaction kinetics compared to spinach. Planta 213:446–456

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z, Varkonyi Z, Hagio M, Iwaki M, Kovacs L, Masamoto K, Itoh S, Wada H (2002) Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41:3796–3802

    Article  PubMed  CAS  Google Scholar 

  • Goss R, Opitz C, Lepetit B, Wilhelm C (2008) The synthesis of NPQ-effective zeaxanthin depends on the presence of a transmembrane proton gradient and a slightly basic stromal side of the thylakoid membrane. Planta 228:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Goss R, Richter M, Wild A (1997) Pigment composition of PS II pigment protein complexes purified by anion exchange chromatography. Identification of xanthophyll cycle pigment binding proteins. J Plant Physiol 151:115–119

    Article  CAS  Google Scholar 

  • Gounaris K, Sen A, Brain APR, Quinn PJ, Williams WP (1983) The formation of non-bilayer structures in total polar lipid extracts of chloroplast membranes. Biochim Biophys Acta 728:129–139

    Article  CAS  Google Scholar 

  • Gray GR, Ivanov AG, Krol M, Williams JP, Kahn MU, Myscich EG, Huner NPA (2005) Temperature and light modulate the trans3-hexadecenoic acid content of phosphatidylglycerol: light-harvesting complex II organization and non- photochemical quenching. Plant Cell Physiol 46:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Grundmeier A, Dau H (2012) Structural models of the manganese complex of photosystem II and mechanistic implications. Biochim Biophys Acta 1817:88–105

    Article  PubMed  CAS  Google Scholar 

  • Guo SK, Tang CQ, Yang ZL, Li LB, Kuang TY, Gong YD, Zhao NM (2004) Effects of acid and alkali on the light absorption, energy transfer and protein secondary structures of core antenna subunits CP43 and CP47 of photosystem II. Photochem Photobiol 79:291–296

    Article  PubMed  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Barber J, Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48:641–671

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris E, Nield J, Gerle C, Barber J (2001) Three-dimensional structure of the photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 135:262–269

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer J, Eubel H, Wehmhoner D, Jänsch L, Braun H (2004) Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. Phytochemistry 65:1683–1692

    Article  PubMed  CAS  Google Scholar 

  • Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6:103–112

    Article  CAS  Google Scholar 

  • Itoh S, Kozuki T, Nishida K, Fukushima Y, Yamakawa H, Domonkos I, Laczkó-Dobos H, Kis M, Ughy B, Gombos Z (2012) Two functional sites of phosphatidylglycerol for regulation of reaction of plastoquinone QB in photosystem II. Biochim Biophys Acta 1817:287–297

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG, Bassham JA (1966) Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci USA 56:1095–1101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kawakami K, Umena Y, Iwai M, Kawabata Y, Ikeuchi M, Kamiya N, Shen J (2011) Roles of PsbI and PsbM in photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography. Biochim Biophys Acta 1807:319–325

    Article  PubMed  CAS  Google Scholar 

  • Kern J, Guskov A (2011) Lipids in photosystem II: multifunctional cofactors. J Photochem Photobiol B 104:19–34

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Sobotka R, Nixon PJ (2012) Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15:245–251

    Article  PubMed  CAS  Google Scholar 

  • Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12

    Article  PubMed  Google Scholar 

  • Krausz E, Hughes JL, Smith PJ, Pace RJ, Arskold SP (2005) Assignment of the low-temperature fluorescence in oxygen-evolving photosystem II. Photosynth Res 84:193–199

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH, Barber J (2000) Phosphatidylglycerol is involved in the dimerization of photosystem II. J Biol Chem 275:6509–6514

    Article  PubMed  CAS  Google Scholar 

  • Laczkó-Dobos H, Ughy B, Tóth SZ, Komenda J, Zsiros O, Domonkos I, Párducz Á, Bogos B, Komura M, Itoh S, Gombos Z (2008) Role of phosphatidylglycerol in the function and assembly of photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochim Biophys Acta 1777:1184–1194

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Latowski D, Akerlund HE, Strzałka K (2004) Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. Biochemistry 43:4417–4420

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2007) Lipids in photosystem II: interactions with protein and cofactors. Biochim Biophys Acta 1767:509–519

    Article  PubMed  CAS  Google Scholar 

  • Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1817:194–208

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Siegenthaler PA (1998) Lipids in photosynthesis: an overview. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 1–20

    Google Scholar 

  • Pagliano C, Barera S, Chimirri F, Saracco G, Barber J (2012) Comparison of the α and β isomeric forms of the detergent n-dodecyl-d-maltoside for solubilizing photosynthetic complexes from pea thylakoid membranes. Biochim Biophys Acta 1817:1506–1515

    Article  PubMed  CAS  Google Scholar 

  • Pospíšil P (2011) Enzymatic function of cytochrome b559 in photosystem II. J Photochem Photobiol B 104:341–347

    Article  PubMed  Google Scholar 

  • Reifarth F, Christen G, Seeliger AG, Dormann P, Benning C, Renger G (1997) Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylglycerol. Biochemistry 36:11769–11776

    Article  PubMed  CAS  Google Scholar 

  • Renger G (2011) Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism. J Photochem Photobiol B 104:35–43

    Article  PubMed  CAS  Google Scholar 

  • Richter M, Goss R, Wagner B, Holzwarth AR (1999) Characterization of the fast and slow reversible components of non-photochemical quenching in isolated pea thylakoids by picosecond time-resolved chlorophyll fluorescence analysis. Biochemistry 38:12718–12726

    Article  PubMed  CAS  Google Scholar 

  • Sakurai I, Shen J, Leng J, Ohashi S, Kobayashi M, Wada H (2006) Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J Biochem 140:201–209

    Article  PubMed  CAS  Google Scholar 

  • Schaller S, Latowski D, Jemiola-Rzeminska M, Dawood A, Wilhelm C, Strzałka K, Goss R (2011) Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochim Biophys Acta 1807:326–335

    Article  PubMed  CAS  Google Scholar 

  • Siegbahn P (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42:1871–1880

    Article  PubMed  CAS  Google Scholar 

  • Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci USA 97:1473–1476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Srivastava A, Strasser RJ, Govindjee (1995) Polyphasic rise of chlorophyll a fluorescence in herbicide-resistant D1 mutants of Chlamydomonas reinardtii. Photosynth Res 43:131–141

    Article  PubMed  CAS  Google Scholar 

  • Steffen R, Kelly AA, Huyer J, Dörmann P, Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry 44:3134–3142

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A, Govindjee , Strasser BJ, Strasser RJ (1998) Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation. J Theor Biol 193:131–151

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A (1995) Polyphasic chlorophyll a fluorescene transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Takahashi T, Inoue-Kashino N, Ozawa S, Takahashi Y, Kashino Y, Satoh K (2009) Photosystem II complex in vivo is a monomer. J Biol Chem 284:15598–15606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Umena Y, Kawakami K, Shen J, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 angstrom. Nature 473:55–60

    Article  PubMed  CAS  Google Scholar 

  • Ventrella A, Catucci L, Mascolo G, Corcelli A, Agostiano A (2007) Isolation and characterization of lipids strictly associated to PSII complexes: focus on cardiolipin structural and functional role. Biochim Biophys Acta 1768:1620–1627

    Article  PubMed  CAS  Google Scholar 

  • Wang ZG, Xu TH, Liu C, Yang CH (2010) Fast isolation of highly active photosystem II core complexes from spinach. J Integr Plant Biol 52:793–800

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Iwai M, Narikawa R, Ikeuchi M (2009) Is the photosystem II complex a monomer or a dimer? Plant Cell Physiol 50:1674–1680

    Article  PubMed  CAS  Google Scholar 

  • Wright SW, Mantoura RFC (1997) Guidelines for collection and pigment analysis of field samples. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Monographs on oceanographic methodology: phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Publishing, Paris, pp 429–445

    Google Scholar 

  • Wu W, Ping W, Wu H, Li M, Gu D, Xu Y (2013) Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b(6)f-mediated intersystem electron transport process and affects the photostability of the photosystem II apparatus. Biochim Biophys Acta 1827:709–722

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Liu S, Feng FY, Hou HT, Jiang GZ, Xu YN, Kuang TY (2004) Effects of phosphate deficiency on the lipid composition in cucumberthylakoid membranes and PSII particles. Plant Sci 166:1575–1579

    Article  CAS  Google Scholar 

  • Yoshioka M, Yamamoto Y (2011) Quality control of photosystem II: where and how does the degradation of the D1 protein by FtsH proteases start under light stress?—facts and hypotheses. J Photochem Photobiol, B 104:229–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Deutsche Forschungsgemeinschaft (DFG, Grant Go818/7-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reimund Goss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2014_2130_MOESM1_ESM.docx

Elution profile of the size exclusion chromatography of control PSII core complexes and PSII core complexes incubated with the lipids DGDG or PG (DOCX 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansy, M., Wilhelm, C. & Goss, R. Influence of thylakoid membrane lipids on the structure and function of the plant photosystem II core complex. Planta 240, 781–796 (2014). https://doi.org/10.1007/s00425-014-2130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2130-2

Keywords

Navigation