Skip to main content
Log in

Markov switching asymmetric GARCH model: stability and forecasting

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

A new Markov switching asymmetric GARCH model is proposed where each state follows the smooth transition GARCH model, represented by Lubrano (Recherches Economiques de Louvain 67:257–287, 2001), that follows a logistic smooth transition structure between effects of positive and negative shocks. This consideration provides better forecasts than GARCH, Markov switching GARCH and smooth transition GARCH models, in many financial time series. The asymptotic finiteness of the second moment is investigated. The parameters of the model are estimated by applying MCMC methods through Gibbs and griddy Gibbs sampling. Applying the log return of some part of \( S \& P\ 500\) indices, we show the competing performance of in sample fit and out of sample forecast volatility and value at risk of the proposed model. The Diebold–Mariano test shows that the presented model outperforms all competing models in forecast volatility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. log return in percentage is defined as \(r_t=100*\log \Big (\frac{P_t}{P_{t-1}}\Big )\), where \(P_t\) is the index level at time t.

References

  • Abramson A, Cohen I (2007) On the stationarity of Markov-Switching GARCH processes. Econom Theory 23:485–500

    Article  MathSciNet  Google Scholar 

  • Alemohammad N, Rezakhah S, Alizadeh SH (2016) Markov switching component GARCH model: stability and forecasting. Commun Stat Theory Methods 45(15):4332–4348

    Article  MathSciNet  Google Scholar 

  • Ardia D (2008) Financial risk management with Bayesian estimation of GARCH models: theory and applications, vol 612. Lecture notes in economics and mathematical systems. Springer, Heidelberg

  • Ardia D (2009) Bayesian estimation of a Markov switching threshold asymmetric GARCH model with Student-t innovations. Econom J 12(2):105–126

    Article  MathSciNet  Google Scholar 

  • Bauwens L, Lubrano M (1998) Bayesian inference on GARCH models using the Gibbs sampler. Econom J 1:23–46

    Article  Google Scholar 

  • Bauwens L, Storti G (2009) A component GARCH model with time varying weights. Stud Nonlinear Dyn Econom 13:Article 1

  • Bauwens L, Preminger A, Rombouts VK (2010) Theory and inference for a Markov switching GARCH model. Econom J 13:218–244

    Article  MathSciNet  Google Scholar 

  • Berg A, Meyer R, Yu J (2004) Deviance information criterion for comparing stochastic volatility models. J Bus Econ Stat 22:107–120

    Article  MathSciNet  Google Scholar 

  • Black F (1976) studies of stock price volatility changes. In: Proceedings of the 1976 meetings of the business and economic statistics section. American Statistical Association, Washington DC, pp 177–181

  • Bollerslev T (1986) Generalized autoregressive conditional heteroscedasticity. J Econom 31:307–327

    Article  Google Scholar 

  • Chib S (1996) Calculating posterior distributions and model estimates in Markov mixture models. J Econom 75:79–97

    Article  Google Scholar 

  • Christofferssen P (1998) Evaluating interval forecasting. Int Econ Rev 39:841–862

    Article  Google Scholar 

  • Curto JD, Pinto JC (2012) Predicting the financial crisis volatility. Econ Comput Econ Cybern Stud Res J 46:183–195

    Google Scholar 

  • Curto JD, Pinto JC, Tavares GN (2009) Modeling stock markets volatility using GARCH models with Normal, Students t and stable Paretian distributions. Stat Pap 50:311–321

    Article  MathSciNet  Google Scholar 

  • Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–263

    Google Scholar 

  • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007

    Article  MathSciNet  Google Scholar 

  • Engle RF (1990) Discusion: stock volatility and the crash of ’87. Rev Financ Stud 3:103–106

    Article  Google Scholar 

  • Gelman A, Hwang J, Vehtari A (2014) Understanding predictive information criteria for Bayesian. Stat Comput 24:997–1016

    Article  MathSciNet  Google Scholar 

  • Glosten LR, Jagannathan R, Runkle D (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks. J Financ 48:1779–1801

    Article  Google Scholar 

  • Gonzalez-Rivera G (1998) Smooth transition GARCH models. Stud Nonlinear Dyn Econom 3:61–78

    MATH  Google Scholar 

  • Gray SF (1996) Modeling the conditional distribution of interest rates as a regime-switching process. J Financ Econ 42:27–62

    Article  Google Scholar 

  • Haas M, Mittnik J, Paolella MS (2004) A new approach to markov-switching GARCH models. J Financ Econom 2:493–530

    Article  Google Scholar 

  • Haas M, Krause J, Paolella MS, Steudc SC (2013) Time varying mixture GARCH models and asymmetric volatility. N A J Econ Financ 26:602–623

    Article  Google Scholar 

  • Hamilton JD, Susmel R (1994) Autoregressive conditional heteroskedasticity and changes in regime. J Econom 64:307–333

    Article  Google Scholar 

  • Harvey D, Leybourns S, Newbold P (1997) Testing the equality of prediction mean squared error. Int J Forecast 13:281–291

    Article  Google Scholar 

  • Kaufman S, Fruhwirth-Schnatter S (2002) Bayesian analysis of switching ARCH models. J Time Ser Anal 23:425–458

    Article  MathSciNet  Google Scholar 

  • Klaassen F (2002) Improving GARCH volatility forecasts with regime-switching GARCH. Empir Econ 27:363–394

    Article  Google Scholar 

  • Lancaster P, Tismenetsky M (1985) The theory of matrices, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  • Liu S, Heyde CC, Wong WK (2008) On estimation in conditional heteroskedastic time series models under non-normal distributions. Stat Pap 49:455–469

    Article  MathSciNet  Google Scholar 

  • Lubrano M (2001) Smooth transition GARCH models: a Bayesian approach mixture models. Recherches Economiques de Louvain 67:257–287

    Google Scholar 

  • Medeiros MC, Veiga A (2009) Modeling multiple regimes in financial volatility with a flexible coefficient GARCH(1,1). Econom Theory 25:117–161

    Article  MathSciNet  Google Scholar 

  • Miazhynskia T, Dorffner G (2006) A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models. Stat Pap 47:525–549

    Article  MathSciNet  Google Scholar 

  • Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59:347–370

    Article  MathSciNet  Google Scholar 

  • Ritter C, Tanner MA (1992) Facilitating the Gibbs sampler: the Gibbs Stopper and the Griddy-Gibbs Sampler. J Am Stat Assoc 87:861–868

    Article  Google Scholar 

  • Speigelhalter DJ, Best NG, Carlin BP, Van del lindle A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser 64:583–639

    Article  MathSciNet  Google Scholar 

  • StataCrop (2015) Stata: release 14 Statistical software. StataCrop LLC, College station

  • Xekalaki E, Stavros D (2010) ARCH nodels for financial applications. Wiley, New York

    Book  Google Scholar 

  • Zakoian JM (1994) Threshold heteroskedastic models. J Econ Dyn Control 27:577–597

    MATH  Google Scholar 

Download references

Acknowledgements

This paper initiated during Professor Rezakhah sabbatical at Institute of Mathematics at the EPFL where benefited from the discussion of the paper with Professor Stephan Morgenthaler and careful written comments and suggestions of Professor Anthony Davison which caused to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rezakhah.

Appendices

Appendix A

Proof of Lemma 3.1

As the hidden variables \(\{Z_{t}\}_{t\ge 1}\) have Markov structure in MS-STARCH model, so

$$\begin{aligned} \alpha _j^{(t)}&=p(Z_t=j|{\mathcal {I}}_{t-1})=\sum _{m=1}^{K}{P(Z_t=j,Z_{t-1}=m|{\mathcal {I}}_{t-1})} \nonumber \\&=\sum _{m=1}^{K}{p(Z_t=j|Z_{t-1}=m,{\mathcal {I}}_{t-1})p(Z_{t-1}=m|{\mathcal {I}}_{t-1})} \nonumber \\&=\sum _{m=1}^{K}{p(Z_t=j|Z_{t-1}=m)p(Z_{t-1}=m|{\mathcal {I}}_{t-1})} \nonumber \\&=\frac{\sum _{m=1}^{K}{f({\mathcal {I}}_{t-1},Z_{t-1}=m)p_{m,j}}}{\sum _{m=1}^{K}{f({\mathcal {I}}_{t-1},Z_{t-1}=m)}} \nonumber \\&=\frac{\sum _{m=1}^{K}{f(y_{t-1}|Z_{t-1}=m,{\mathcal {I}}_{t-2})}\alpha _m^{(t-1)}p_{m,j}}{\sum _{m=1}^{K}{f(y_{t-1}|Z_{t-1}=m,{\mathcal {I}}_{t-2})\alpha _m^{(t-1)}}}. \end{aligned}$$
(7.1)

\(\square \)

Appendix B

Proof of Theorem 3.1

Let \(E_{t}(.)\) denotes the expectation with respect to the information up to time t. Thus the second moment of the model can be calculated as, see Abramson and Cohen (2007):

$$\begin{aligned} E(y^2_t)= & {} E(H_{Z_t,t})=E_{Z_t}[E_{t-1}(H_{Z_t,t}|z_t)]\nonumber \\= & {} \sum _{z_t=1}^{K}{\pi _{z_t}E_{t-1}(H_{Z_t,t}|z_t)}. \end{aligned}$$
(7.2)

Also let \(E(.|z_t)\) and \(p(.|z_t)\) denote \(E(.|Z_t=z_t)\) and \(P(.|Z_t=z_t)\), respectively, where \(z_t\) is the realization of the state at time t. Applying to the method of Medeiros and Veiga (2009), we find an upper bound of \(E_{t-1}(H_{m,t}|z_t)\), for \( m=1,2,\ldots ,K\) by the following

$$\begin{aligned} E_{t-1}(H_{m,t}|z_t)&= E_{t-1}(a_{0m}+a_{1m}y^2_{t-1}(1-w_{m,t-1}) +a_{2m}y^2_{t-1}w_{m,t-1}+b_mH_{m,t-1}|z_t) \nonumber \\&=\underbrace{a_{0m}}_{I}+\underbrace{a_{1m}E_{t-1}[y^2_{t-1}|z_t]}_{II}+\underbrace{(a_{2m}-a_{1m})E_{t-1}[y^2_{t-1}w_{m,t-1}|z_t]}_{III} \nonumber \\&\quad +\underbrace{b_mE_{t-1}[H_{m,t-1}|z_t]}_{IV}. \end{aligned}$$
(7.3)

The term (II) in (7.3) can be interpreted as follows:

$$\begin{aligned} E_{t-1}[y^2_{t-1}|z_t]= & {} \sum _{z_{t-1}=1}^{K} {\int _{S_{{\mathcal {I}}_{t-1}}}{y^2_{t-1}p({\mathcal {I}}_{t-1}|z_t,z_{t-1})p(z_{t-1}|z_t)d{\mathcal {I}}_{t-1}}}\nonumber \\= & {} \sum _{z_{t-1}=1}^{K}{p(z_{t-1}|z_t)E_{t-2}[H_{Z_{t-1},t-1}|z_{t-1}]}, \end{aligned}$$
(7.4)

where \(S_{{\mathcal {I}}_{t-1}}\) is the support of \({\mathcal {I}}_{t-1}=(y_1,\ldots ,y_{t-1})\). \(\square \)

Upper bound for III in (7.3): Let \(0<M<\infty \) be a constant, so

$$\begin{aligned} E_{t-1}[y^2_{t-1}w_{m,t-1}|z_t]=&E_{t-1}[y^2_{t-1}w_{m,t-1}I_{|y_{t-1}|<M}|z_t]\\&+E_{t-1}[y^2_{t-1}w_{m,t-1}I_{|y_{t-1}|\ge M}|z_t] \end{aligned}$$

in which

$$\begin{aligned} I_{x<a}=\left\{ \begin{array}{ll} 1 &{} \hbox { if}\ x<a\\ 0 &{} \text {otherwise.} \end{array} \right. \end{aligned}$$

As by (2.4), \(0<w_{m,t-1}<1\) and so

$$\begin{aligned} E_{t-1}[y^2_{t-1}w_{m,t-1}|z_t]\le M^2+E_{t-1}[y^2_{t-1}w_{m,t-1}I_{|y_{t-1}|\ge M}|z_t], \end{aligned}$$

also

$$\begin{aligned} E_{t-1}[y^2_{t-1}w_{m,t-1}I_{|y_{t-1}|\ge M}|z_t]&=\int _{S_{{\mathcal {I}}_{t-2}},y_{t-1}\le -M}{y^2_{t-1}[w_{m,t-1}]p({\mathcal {I}}_{t-1}|z_t)d{\mathcal {I}}_{t-1}}\\&\quad +\int _{S_{{\mathcal {I}}_{t-2}},y_{t-1}\ge M}{y^2_{t-1}[w_{m,t-1}]p({\mathcal {I}}_{t-1}|z_t)d{\mathcal {I}}_{t-1}}, \end{aligned}$$

by (2.4),

$$\begin{aligned} \lim _{y_{t-1}\rightarrow +\infty }w_{m,t-1}=1 \quad \lim _{y_{t-1}\rightarrow -\infty }w_{m,t-1}=0. \end{aligned}$$
(7.5)

So for any fixed positive small number \(\delta >0\), we can consider \(M>0\) so large that for \(y_{t-1}\ge M\), \(|w_{m,t-1}-1|\le \delta \) and for \(y_{t-1}\le -M\), \(|w_{m,t-1}|\le \delta \). Hence

$$\begin{aligned} E_{t-1}[y^2_{t-1}w_{m,t-1}I_{|y_{t-1}|\ge M}|z_t]&\le \delta \int _{S_{{\mathcal {I}}_{t-2}},y_{t-1}\le -M}{y^2_{t-1}p({\mathcal {I}}_{t-1}|z_t)d{\mathcal {I}}_{t-1}}\\&\quad + (\delta +1) \int _{S_{{\mathcal {I}}_{t-2}},y_{t-1}\ge M}{y^2_{t-1}p({\mathcal {I}}_{t-1}|z_t)d{\mathcal {I}}_{t-1}}. \end{aligned}$$

Since the distribution of the \(\{\varepsilon _{t}\}\) is symmetric, then

$$\begin{aligned} \delta \int _{S_{{\mathcal {I}}_{t-2}},y_{t-1}\le -M}{y^2_{t-1} p({\mathcal {I}}_{t-1}|z_t)d{\mathcal {I}}_{t-1}}&\le \delta \int _{S_{{\mathcal {I}}_{t-2}},-\infty<y_{t-1}<0}{y^2_{t-1}p({\mathcal {I}}_{t-1}|z_t)d{\mathcal {I}}_{t-1}}\\&=\delta \frac{ E_{t-1}[y^2_{t-1}|z_t]}{2} \end{aligned}$$

and

$$\begin{aligned} (\delta +1)\int _{S_{{\mathcal {I}}_{t-2}},y_{t-1}\ge M}{y^2_{t-1}p({\mathcal {I}}_{t-1}|z_t)d{\mathcal {I}}_{t-1}}&\le (\delta +1)\int _{S_{{\mathcal {I}}_{t-2}},0<y_{t-1}<\infty }{y^2_{t-1} p({\mathcal {I}}_{t-1}|z_t)d{\mathcal {I}}_{t-1}}\\&=(\delta +1)\frac{ E_{t-1}[y^2_{t-1}|z_t]}{2}. \end{aligned}$$

Therefore

$$\begin{aligned} E_{t-1}[y^2_{t-1}w_{m,t-1}|z_t]\le M^2+(\delta +\frac{1}{2})E_{t-1}[y^2_{t-1}|z_t]. \end{aligned}$$

Upper bound for IV in (7.3):

$$\begin{aligned} b_{m}E_{t-1}(H_{m,t-1}|z_t)= & {} b_{m}{\int _{S_{{\mathcal {I}}_{t-1}}}{H_{m,t-1}p({\mathcal {I}}_{t-1}|z_t)d{\mathcal {I}}_{t-1}}}\nonumber \\= & {} b_{m}\sum _{z_{t-1}=1}^{K} {p(z_{t-1}|z_t)E_{t-2}(H_{m,t-1}|z_{t-1})}. \end{aligned}$$
(7.6)

By replacing the obtained upper bounds and relations (7.4) in (7.3), the upper bound for \(E_{t-1}(H_{m,t}|z_t)\) is obtained by:

$$\begin{aligned} E_{t-1}(H_{m,t}|z_t)&\le a_{0m}+|a_{2m}-a_{1m}|M^2 \nonumber \\&\quad +\sum _{z_{t-1}=1}^{K}{{[a_{1m}+|a_{2m}-a_{1m}|(\delta +\frac{1}{2})] p(z_{t-1}|z_t)}E_{t-2}[H_{z_{t-1},t-1}|z_{t-1}]}\nonumber \\&\quad +\sum _{z_{t-1}=1}^{K}{b_mp(z_{t-1}|z_t)E_{t-2}(H_{m,t-1}|z_{t-1})}, \end{aligned}$$
(7.7)

in which by Bayes’ rule

$$\begin{aligned} p(z_{t-i}|z_t)=\frac{\pi _{z_{t-i}}}{\pi _{z_t}}\{P_{z_{t-i}z_t }\}, \end{aligned}$$

where P is the transition probability matrix.

Let \(A_t(j,k)=E_{t-1}[H_{j,t}|Z_{t}=k]\), \( {A}_t=[A_t(1,1),A_t(2,1),\ldots ,A_t(K,1),A_t(1,2),\ldots ,A_t(K,K)]\) be a \(K^2\)-by-1 vector and consider \(\dot{ { {\Omega }}}=( { {\Omega }}^{\prime },\ldots , { {\Omega }}^{\prime })^{\prime }\) be a vector that is made of K vector \({ {\Omega }}\). By (7.23)–(7.26), the following recursive inequality is attained,

$$\begin{aligned} \mathbf{A }_t\le \dot{ { {\Omega }}}+ \mathbf{{C}}\mathbf{A }_{t-1},\quad t\ge 0. \end{aligned}$$
(7.8)

with some initial conditions \(\mathbf{A }_{-1}.\) The relation (7.8) implies that

$$\begin{aligned} {A}_t\le \dot{{ {\Omega }}}\sum _{i=0}^{t-1}{{ {C}}^i}+{ {C}}^{t} {A}_{0}:= {B}_{t}. \end{aligned}$$
(7.9)

Following the matrix convergence theorem Lancaster and Tismenetsky (1985), the necessary condition for the convergence of \( {B}_{t}\) when \(t\rightarrow \infty \) is that \(\rho ({ {C}}) <1\). Under this condition, \({ {C}}^t\) converges to zero as t goes to infinity and \(\sum _{i=0}^{t-1}{{ {C}}^i}\) converges to \((I-{ {C}})^{-1}\) provided that matrix \((I-{ {C}})\) is invertible. So if \(\rho ({ {C}}) <1\),

$$\begin{aligned} \lim _{t\rightarrow \infty } {A}_t\le (I-{ {C}})^{-1}\dot{{ {\Omega }}}. \end{aligned}$$

By (7.2) the upper bound for the asymptotic behavior of unconditional variance is given by

$$\begin{aligned} \lim _{t\rightarrow \infty }E(y^2_t)\le { {\Pi ^\prime (I-C)^{-1}}}\dot{{ {\Omega }}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alemohammad, N., Rezakhah, S. & Alizadeh, S.H. Markov switching asymmetric GARCH model: stability and forecasting. Stat Papers 61, 1309–1333 (2020). https://doi.org/10.1007/s00362-018-0992-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-0992-2

Keywords

Mathematics Subject Classification

Navigation