Skip to main content
Log in

Adaptive responses of peripheral lateral line nerve fibres to sinusoidal wave stimuli

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Sensory adaptation is characterized by a reduction in the firing frequency of neurons to prolonged stimulation, also called spike frequency adaptation. This has been documented for sensory neurons of the visual, olfactory, electrosensory, and auditory system both in response to constant-amplitude and to sinusoidal stimuli, but has thus far not been described systematically for the lateral line system. We recorded neuronal activity from primary afferent nerve fibres in the lateral line in goldfish in response to sinusoidal wave stimuli. Depending on stimulus characteristics, afferent fibre responses exhibited a distinct onset followed by a decline in firing rate to an apparent steady-state level, i.e., they exhibited adaptation. The degree of adaptation, measured as the percent decrease in firing rate between onset and steady-state, increased with stimulus amplitude and frequency and with increasing steepness of the rising flank of the stimulus. This may in part be due to the velocity and/or acceleration sensitivity of the lateral line receptors. The time course of the response decline, i.e., the time course of adaptation was best-fit by a power function. This is consistent with the previous studies on spike frequency adaptation in sensory afferents of weakly electric fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbott LF, Sen K, Varela JA, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–222

    Article  CAS  PubMed  Google Scholar 

  • Adrian ED (1928) The basis of sensation. Christophers, London

    Google Scholar 

  • Albert J, Nadrowski B, Göpfert MC (2007) Mechanical signatures of transducer gating in Drosophila the ear. Curr Biol 17:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Batschelet E (1981) The Rayleigh test. In: Batschelet E (ed) Circular statistics in biology. Academic Press, New York, pp 54–58

    Google Scholar 

  • Benda J, Herz AVM (2003) A universal model for spike frequency adaptation. Neural Comp 15:2523–2564

    Article  Google Scholar 

  • Benda J, Tabak J (2014) Spike frequency adaptation. Encyclopedia of Computational Neuroscience, pp 1–12

  • Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25:2312–2321

    Article  CAS  PubMed  Google Scholar 

  • Benda J, Maler L, Longtin A (2010) Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. J Neurophysiol 104:2806–2820

    Article  PubMed  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in zoology, vol 41., Gustav FischerStuttgart, Jena, pp 1–115

    Google Scholar 

  • Bleckmann H, Weiss O, Bullock TH (1989) Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol A 164:459–474

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168:749–757

    CAS  PubMed  Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209:327–342

    Article  PubMed  Google Scholar 

  • Chance FS, Nelson SB, Abbott LF (1998) Synaptic depression and the temporal response characteristics of V1 cells. J Neurosci 18:4785–4799

    CAS  PubMed  Google Scholar 

  • Clarke SE, Naud R, Lngtin A, Maler L (2013) Speed-invariant encoding of looming object distance requires power law spike rate adaptation. PNAS 110:13624–13629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs S, Conley RA (1997) Dipole source localization by mottled sculpin. I. Approach strategies. J Comp Physiol A 180:387–400

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Fay R (1985) Adaptation effects on the detection of amplitude modulation: neurophysiological and behavioral assessment in the goldfish auditory system. Hear Res 19:57–71

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Fay R (1987) Response dynamics of goldfish saccular fibers: effects of stimulus frequency and intensity on fibres with different tuning, sensitivity and spontaneous activity. J Acoust Soc Am 81:1025–1035

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–567

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Montgomery J (1992) Fibres innervating different parts of the lateral line system of the Antarctic fish, Trematomus bernacchii, have similar neural responses despite large variations in peripheral morphology. Brain Behav Evol 40:217–233

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Janssen J, Webb J (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–594

    Chapter  Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359–371

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Mogdans J, Halstead M, Montgomery JC (1998) Transformations of peripheral inputs by the first order brainstem nucleus of the lateral line system. J Comp Physiol A 182:609–626

    Article  Google Scholar 

  • Crumling MA, Saunders JC (2007) Tonotopic distribution of short-term adaptation properties in the cochlear nerve of normal and acoustically overexposed chicks. JARO 8:54–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Demmer J, Kloppenburg P (2009) Intrinsic membrane properties and inhibitory synaptic input of kenyon cells as mechanisms for sparse coding? J Neurophysiol 102:1538–1550

    Article  CAS  PubMed  Google Scholar 

  • Elepfandt A, Wiedemer L (1987) Lateral-line responses to water surface waves in the clawed frog, Xenopus laevis. J Comp Physiol A 160:667–682

    Article  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513–526

    Article  CAS  Google Scholar 

  • Engelmann J, Gertz S, Goulet J, Schuh A, von der Emde G (2010) Coding of stimuli by ampullary afferents in Gnathonemus petersii. J Neurophysiol 104:1955–1968

    Article  CAS  PubMed  Google Scholar 

  • Epping WJM (1990) Influence of adaptation on neural sensitivity to temporal characteristics of sound in the dorsal medullary nucleus and torus semicircularis of the grassfrog. Hear Res 45:1–14

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (1985) Sound intensity processing by the goldfish. J Acoust Soc Am 78:1296–1309

    Article  CAS  PubMed  Google Scholar 

  • Finlayson PG, Adam TJ (1997) Excitatory and inhibitory response adaptation in the superior olive complex affects binaural acoustic processing. Hear Res 103:1–18

    Article  CAS  PubMed  Google Scholar 

  • Givois V, Pollack GS (2000) Sensory habituation of auditory receptor neurons: implications for sound localization. J Exp Biol 203:2529–2537

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic stimuli: some physiological implications. J Neurophysiol 32:613–636

    CAS  PubMed  Google Scholar 

  • Gollisch T, Herz AVM (2004) Input-driven components of spike-frequency adaptation can be unmasked in vivo. J Neurosci 24:7435–7444

    Article  CAS  PubMed  Google Scholar 

  • Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Z vergl Physiol 47:316–338

    Article  Google Scholar 

  • Harris DM, Dallos P (1979) Forward masking of auditory nerve fibre responses. J Neurophysiol 42:1083–1107

    CAS  PubMed  Google Scholar 

  • Harris GG, Milne DC (1966) Input–output characteristics of the lateral-line sense organs of Xenopus laevis. JASA 40:32–42

    Article  CAS  Google Scholar 

  • Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci 97:11765–11772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingham NJ, McAlpine D (2004) Spike-frequency adaptation in the inferior colliculus. J Neurophysiol 91:632–645

    Article  PubMed  Google Scholar 

  • Javel E (1996) Long-term adaptation in cat auditory-nerve fibre responses. J Acoust Soc Am 99:1040–1052

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Chapter  Google Scholar 

  • Kiang NYS (1965) Discharge patterns of single fibres in the cat’s auditory nerve. MIT Press, Cambridge

    Google Scholar 

  • Kroese ABA, Schellart NAM (1992) Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68:2212–2221

    CAS  PubMed  Google Scholar 

  • Kuno M (1983) Adaptive changes in firing rates in goldfish auditory berve fibres as related to changes in mean amplitude of excitatory postsynaptic potentials. J Neurophysiol 50:573–581

    CAS  PubMed  Google Scholar 

  • Laughlin SB (1989) The role of sensory adaptation in the retina. J Exp Biol 146:39–62

    CAS  PubMed  Google Scholar 

  • Megela AL, Capranica RR (1981) Response patterns to tone bursts in peripheral auditory system of anurans. J Neurophysiol 46:465–478

    CAS  PubMed  Google Scholar 

  • Modrell MS, Bemis WE, Northcutt RG, Davis MC, Baker CVH (2011) Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nat Comm 2:496. doi:10.1038/ncomms1502

    Article  Google Scholar 

  • Mogdans J, Bleckmann H (1999) Peripheral lateral line responses to amplitude-modulated sinusoidal wave stimuli. J Comp Physiol A 185:173–180

    Article  Google Scholar 

  • Müller U (1984) Anatomische und physiologische Anpassungen des Seitenliniensystems von Pantodon buchholzi an den Lebensraum Wasseroberfläche. PhD thesis, Justus-Liebig-University Gießen

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568

    Article  Google Scholar 

  • Nelson ME, Xu Z, Payne JR (1997) Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish. J Comp Physiol A 181:532–544

    Article  CAS  PubMed  Google Scholar 

  • Nomoto M, Suga N, Katsuki Y (1964) Discharge pattern and inhibition of primary auditory-nerve fibres in the emonkey. J Neurophysiol 27:768–787

    CAS  PubMed  Google Scholar 

  • Northcutt G (1989) The phylogenetic distribution and innnervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 17–78

    Chapter  Google Scholar 

  • Oakley B, Schafer R (1978) Experimental neurobiology. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Palmer LM, Mensinger AF (2004) Effect of the anesthetic tricaine (MS-222) on nerve activity in the anterior lateral line of the Oyster Toadfish, Opsanus tau. J Neurophysiol 92:1034–1041

    Article  CAS  PubMed  Google Scholar 

  • Peron S, Gabbiani F (2009) Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat Neurosci 12:318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibres. Hear Res 18:159–168

    Article  CAS  PubMed  Google Scholar 

  • Ronacher B, Hennig RM (2004) Neuronal adaptation improves the recognition of temporal patterns in a grasshopper. J Comp Physiol A 190:311–319

    Article  CAS  Google Scholar 

  • Smith RL (1977) Short-term adaptation in single auditory nerve fibres: some poststimulatory effects. J Neurophysiol 40:1098–1112

    CAS  PubMed  Google Scholar 

  • Smith RL (1979) Adaptation, saturation, and physiological masking in single auditory nerve fibres. J Acosut Soc Am 65:166–178

    Article  CAS  Google Scholar 

  • Smith RL, Brachman ML (1982) Adaptation in auditory-nerve fibres: a revised model. Biol Cybern 44:107–120

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Zwislocki JJ (1975) Short-term adaptation and incremental responses of single auditory-nerve-fibres. Biol Cybern 17:169–182

    Article  CAS  PubMed  Google Scholar 

  • Späth M, Schweickert W (1977) The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral-line system. Naunyn-Schmiedeberg’s Arch Pharmacol 297:9–16

    Article  Google Scholar 

  • Tasaki I (1954) Nerve impulses in individual auditory nerve fibres of guinea pig. J Neurophysiol 17:97–122

    CAS  PubMed  Google Scholar 

  • Topp G (1983) Primary lateral line responses to water surface waves in the topminnow Aplocheilus lineatus (Pisces, Cyprinodotinae). Pflügers Arch 397:62–67

    Article  CAS  PubMed  Google Scholar 

  • Unbehauen H (1980) Morphologische und elektrophysiologische Untersuchungen zur Wirkung von Wasserwellen auf das Seitenorgan des Streifenhechtlings (Aplocheilus lineatus). Dissertation, Eberhard-Karls-Universität Tübingen

  • van Netten SM (1991) Hydrodynamics of the excitation of the cupula in the fish canal lateral line. JASA 89:310–319

    Article  Google Scholar 

  • van Netten SM, Kroese AB (1987) Laser interferometric measurements on the dynamic behaviour of the cupula in the fish lateral line. Hear Res 29:55–61

    Article  PubMed  Google Scholar 

  • Wark B, Lundstrom BN, Fairhall F (2007) Sensory adaptation. Curr Opin Neurobiol 17:423–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster MA (2012) Evolving concepts of sensory adaptation. F1000 Biol Reports. doi:10.3410/B4-21

    Google Scholar 

  • Westermann LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249–260

    Article  Google Scholar 

  • Wubbels RJ (1992) Afferent response of a head canal neuromast of the ruff (Acerina cernua) lateral line. Comp Biochem Physiol 102:19–26

    Article  Google Scholar 

  • Wubbels RJ, Kroese ABA, Schellart NAM (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). J Exp Biol 179:77–92

    Google Scholar 

  • Xu Z, Payne JR, Nelson ME (1996) Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish. J Neurophysiol 76:2020–2032

    CAS  PubMed  Google Scholar 

  • Yates GK, Robertson D, Johnstone BM (1985) Very rapid adaptation in the guinea pig auditory nerve. Hear Res 17:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zelick R, Narins PM (1985) Temporary threshold shift, adaptation, and recovery characteristics of frog auditory nerve fibres. Hear Res 17:161–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Horst Bleckmann for valuable comments on an earlier version of the manuscript. This research was partly supported by the European Commission, Future and Emerging 476 Technologies, under project CILIA (project number 016039). The experiments reported on in this paper comply with the current animal protection laws of the Federal Republic of Germany (“Tierschutzgesetz”). Use of animals and experimental procedures were approved by the Bezirksregierung Köln, permission no. 50.203.2 BN 7, 14/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Mogdans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogdans, J., Müller, C., Frings, M. et al. Adaptive responses of peripheral lateral line nerve fibres to sinusoidal wave stimuli. J Comp Physiol A 203, 329–342 (2017). https://doi.org/10.1007/s00359-017-1172-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1172-x

Keywords

Navigation