Skip to main content

The Phylogenetic Distribution and Innervation of Craniate Mechanoreceptive Lateral Lines

  • Conference paper
The Mechanosensory Lateral Line

Abstract

Phylogenetic studies can be undertaken with a number of aims: (1) to describe the history of traits; (2) to discern form-function relationships that may not be evident from examining the traits in a single species; (3) to generate hypotheses regarding the evolutionary mechanisms responsible for the history of the traits; and (4) to detect gaps in our knowledge of the traits (Gans 1985; Northcutt 1985a, 1986a). The following analysis involves each of these aims but is confined to the distribution and innervation of mechanoreceptive neuromasts. It does not attempt to deal with related receptors and organs or the phylogeny of the octavolateralis system as a whole, although I have discussed electroreceptors and the inner ear in previous publications (Northcutt 1980, 1986a,b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alberch P (1980) Ontogenesis and morphological diversification. Am Zool 20: 653–667.

    Google Scholar 

  • Alcock R (1899) The peripheral distribution of the cranial nerves of ammocoetes. 1. The branchial nerves, and the innervation of the lateral line system. J Anat Physiol 33: 131–153.

    Google Scholar 

  • Allis EP (1889) The anatomy and development of the lateral line system in Amia calva. J Morphol 2: 463–567.

    Article  Google Scholar 

  • Allis EP (1897) The cranial muscles and cranial and first spinal nerves in Amia calva. J Morphol 12: 487–808.

    Article  Google Scholar 

  • Allis EP (1923) The cranial anatomy of Chlamydoselachus anguineus. Acta Zool 4: 123–221.

    Article  Google Scholar 

  • Allis EP (1934) Concerning the course of the laterosensory canals in recent fishes, pre-fishes and Necturus. J Anat 68: 361–415.

    PubMed  CAS  Google Scholar 

  • Ayers H, Worthington J (1907) The skin end-organs of the trigeminus and lateralis nerves of Bdellostoma dombeyi. Am J Anat 7: 327–336.

    Article  Google Scholar 

  • Bailey SW (1937) An experimental study of the origin of lateral-line structures in embryonic and adult teleosts. J Exp Zool 76: 187–233.

    Article  Google Scholar 

  • Balfour FM (1878) A Monograph on the Development of Elasmorbranch Fishes. London: Macmillan.

    Google Scholar 

  • Bjerring HC (1984) Major anatomical steps toward craniotedness: A heterodox view based largely on embryological data. J Vert Palenotol 4: 17–29.

    Article  Google Scholar 

  • Blaxter JHS (1987) Structure and development of the lateral line. Biol Rev 62: 471–514.

    Article  Google Scholar 

  • Boord RL, Campbell CBG (1977) Structural and functional organization of the lateral line system of sharks. Am Zool 17: 431–441.

    Google Scholar 

  • Budelmann B-U (1988) Morphological diversity of equilibrium receptor systems in aquatic invertebrates. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp 757–782.

    Google Scholar 

  • Bullock TH, Bodznick D, Northcutt RG (1983) The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6: 25–46.

    Article  Google Scholar 

  • Coghill GE (1902) The cranial nerves of Amblystoma tigrinum. J Comp Neurol 12: 205–289.

    Article  Google Scholar 

  • Cole FJ (1896) On the cranial nerves of Chimaera monstrosa (Linn); with a discussion of the lateral line system and of the morphology of the chorda tympani. Trans R Soc Edinb 38: 631–680.

    Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: Evolutionary and functional considerations, In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp 553–593.

    Google Scholar 

  • Dension RH (1964) The Cyathaspididae: A family of Silurian and Devonian jawless vertebrates. Fieldiana Geol 13: 309–473.

    Google Scholar 

  • Dijkgraaf S (1962) The functioning and significance of the lateral line organs. Biol Rev 38: 51–105.

    Article  Google Scholar 

  • Disler NN (1977) The Lateral Line System Sense Organs of Sharks (Elasmobranchii). Moscow: Science Publications.

    Google Scholar 

  • Dumont JPC, Robertson RM (1986) Neuronal circuits: An evolutionary perspective. Science 233: 849–853.

    Article  PubMed  CAS  Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic Patterns and the Evolutionary Process. New York: Columbia University Press.

    Google Scholar 

  • Fernholm B (1985) The lateral line system of cyclostomes. In: Forman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary Biology of Primitive Fishes. New York: Plenum Press, pp 113–122.

    Google Scholar 

  • Finger TE, Tong SL (1984) Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish. J Comp Neurol 229: 129–151.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B (1981) The pattern of lateral line afferents in urodeles. A horseradish peroxidase study. Cell Tissue Res 218: 581–594.

    Article  PubMed  CAS  Google Scholar 

  • Gans C (1985) Scenarios: Why? In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary Biology of Primitive Fishes. New York: Plenum Press, pp 1–10.

    Google Scholar 

  • Gardiner BG (1963) Certain palaeoniscoid fishes and the evolution of the snout in actinopterygians. Bull Br Mus (Nat Hist) 8: 257–325.

    Google Scholar 

  • Garman S (1888) On the lateral canal system of Selachia and Holocephala. Bull Mus Comp Zool 17: 57–119.

    Google Scholar 

  • Goodrich ES (1918) On the development of the segments of the head in Scyllium. Q J Micro Sci 63: 1–30.

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc R Soc Lond B 205: 581–598.

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation-a missing term in the science of form. Paleobiology 8: 4–15.

    Google Scholar 

  • Graham-Smith W (1978) On the lateral lines and dermal bones in the parietal region of some crossopterygian and dipnoan fishes. R Soc Lond Philos, Trans 282: 41–105.

    Article  Google Scholar 

  • Gross W (1968) Porenschuppen und Sinneslinien des Thelodontiers Phlebolepis elegans Pander. Palaontol Z 42: 131–146.

    Google Scholar 

  • Hammarberg F (1937) Zur Kenntnis der ontogenetischen Entwicklung des Schädels von Lepidosteus platystomus. Acta Zool 18: 209–337.

    Article  Google Scholar 

  • Hardisty MV (1979) Biology of the Cyclostomes. London: Chapman and Hall.

    Google Scholar 

  • Herrick CJ (1899) The cranial and first spinal nerves of Menidia; a contribution upon the nerve components of the bony fishes. J Comp Neurol 9: 153–455.

    Article  Google Scholar 

  • Herrick CJ (1900) A contribution upon the cranial nerves of the codfish. J Comp Neurol 10: 265–318.

    Article  Google Scholar 

  • Herrick CJ (1901) The cranial nerves and cutaneous sense organs of the North American siluroid fishes. J Comp Neurol 11: 177–249.

    Article  Google Scholar 

  • Holmgren N (1940) Studies on the head in fishes; embryological, morphological, and phylogenetical researches. Acta Zool 21: 51–267.

    Article  Google Scholar 

  • Holmgren N (1942) General morphology of the lateral sensory line system of the head in fish. K Svenska Vet-Ak Hdl Oefv 20: 51–46.

    Google Scholar 

  • Holmgren N, Pehrson T (1949) Some remarks on the ontogenetical development of the sensory lines on the cheek in fishes and amphibians. Acta Zool 30: 249–314.

    Article  Google Scholar 

  • Jansen J (1930) The brain of Myxine glutinosa J Comp Neurol 49: 359–507.

    Article  Google Scholar 

  • Janssen J, Coombs S, Hoekstra D. Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30: 210–229.

    PubMed  CAS  Google Scholar 

  • Janvier P (1974) The sensory line system and its innervation in the Osteostraci (Agnatha, Cephalaspidomorphi). Zool Scripta 3: 91–99.

    Article  Google Scholar 

  • Janvier P (1978) Les negeorires paires des Ostéostracés et la position systématique des Céphalaspidomorphes. Ann Paleontol 64: 113–142.

    Google Scholar 

  • Janvier P (1981) The phylogeny of the craniata, with particular reference to the significance of fossil “agnathans.” J Vert Paleontol 1: 121–159.

    Article  Google Scholar 

  • Jarvik E (1947) Notes on the pit-lines and dermal bones of the head in Polypterus. Zool Bidr Upps 25: 60–78.

    Google Scholar 

  • Jarvik E (1980) Basic Structure and Evolution of Vertebrates, 2 Vols. London: Academic Press.

    Google Scholar 

  • Johnson SE (1917) Structure and development of the sense organs of the lateral canal system of selachians (Mustelus canis and Squalus acanthias). J Comp Neurol 28: 1–74.

    Article  Google Scholar 

  • Johnston JB (1905) The cranial nerve components of Petromyzon. Morphol Jahrb 34: 149–203.

    Google Scholar 

  • Jollie M (1969) Sensory canals of the snout of actinopterygian fishes. Trans Ill St. Acad Sci 62: 61–69.

    Google Scholar 

  • Kingsbury BF (1895) The lateral line system of sense organs in some American Amphibia, and comparison with the dipnoans. Trans Am Microsc Soc 17: 115–145.

    Article  Google Scholar 

  • Kishida R, Goris RC, Nishizawa H, Koyama H, Kadota T, Amemiya F (1987) Primary neurons of the lateral line nerves and their central projections in hagfishes. J Comp Neurol 264: 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Landacre FL (1910) The origin of the cranial ganglia in Ameiurus. J Comp Neruol 20: 309–411.

    Google Scholar 

  • Landacre FL (1916) The cerebral ganglia and early nerves of Squalus acanthias. J Comp Neurol 27: 19–67.

    Article  Google Scholar 

  • Lannoo MJ (1985) Neuromast topography in Ambystoma larvae. Copeia 1985: 535–539.

    Article  Google Scholar 

  • Lannoo MJ (1987a) Neuromast topography in urodele amphibians. J Morphol 191: 247–263.

    Article  Google Scholar 

  • Lannoo MJ (1987b) Neuromast topography in anuran amphibians. J Morphol 191: 115–129.

    Article  Google Scholar 

  • Lekander B (1949) The sensory line system and the canal bones in the head of some Ostariophysi. Acta Zool 30: 1–131.

    Article  Google Scholar 

  • Leydig F (1850) Ueber die Schleimkanäle der Knochenfische. Archiv Anat Physiol 1850: 170–181.

    Google Scholar 

  • Løvtrup S (1977) The Phylogeny of Vertebrata. London: Wiley.

    Google Scholar 

  • Luiten PGM (1975) The central projections of the trigeminal, facial and anterior lateral line nerves in the carp (Cyprinus catpio L.). J Comp Neurol 160: 399–418.

    Article  PubMed  CAS  Google Scholar 

  • Maler L, Karten HJ, Bennett MVL (1973a) The central connections of the posterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151: 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Maler L, Karten HJ, Bennett MVL (1973b) The central connections of the anterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151: 67–84.

    Article  PubMed  CAS  Google Scholar 

  • Marshall NB (1971) Explorations in the Life of Fishes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • McCormick CA (1981) Central projections of the lateral line and eighth nerves in the bowfin, Amia calva. J Comp Neurol 197: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • McCready PJ, Boord RL (1976) The topography of the superficial roots and ganglia of the anterior lateral line nerve of the smooth dogfish, Mustelus canis. J Morphol 150: 527–538.

    PubMed  CAS  Google Scholar 

  • Meredith GE (1984) Peripheral configuration and central projections of the lateral line system in Astronotus ocellatus (Cichlidae): A nonelectroreceptive teleost. J Comp Neurol 228: 342–358.

    Article  PubMed  CAS  Google Scholar 

  • Merritt Hawkes OA (1906) The cranial and spinal nerves of Chlamydoselachus anguineus (Gar.). Proc Zool Soc Lond 1906: 959–991.

    Google Scholar 

  • Miles RS (1966) Protitanichthys and some other coccosteomorph arthrodires from the Devonian of North America. Kungl Svenska Vetens Handl 10: 1–49.

    Google Scholar 

  • Miles RS, Westoll TS (1968) The placoderm fish Coccosteus cuspidatus Miller ex Agassiz from the Middle Old Red Sandstone of Scotland I. Descriptive morphology. Trans R Soc Edinb 67: 373–476.

    Google Scholar 

  • Millot J, Anthony J (1965) Anatomie de Latimeria chalumnae, Vol II; Systéme Nerveaux et Organes des Sens. Paris: CNRS.

    Google Scholar 

  • Morita Y, Finger TE (1985) Topographic and laminar organization of the vagal gustatory system in the goldfish, Carassius auratus. J Comp Neurol 218: 187–201.

    Article  Google Scholar 

  • Moy-Thomas JA, Miles RS (1971) Palaeozoic Fishes. Philadelphia: Saunders, 259 pp

    Google Scholar 

  • Münz H, Claas B (1983) The functional organization of neuromasts in the lateral-line system of a cichlid fish. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in Vertebrate Neuroethology. New York: Plenum, pp 301–307.

    Google Scholar 

  • Nelson GJ (1972) Cephalic sensory canals, pitlines, and the classification of escocoid fishes, with notes on galaxiid and other teleosts. Am Mus Novitates 2392: 1–49.

    Google Scholar 

  • New JG, Northcutt RG (1984a) Central projections of the lateral line nerves in the shovel nose sturgeon. J Comp Neurol 225: 129–140.

    Article  PubMed  CAS  Google Scholar 

  • New JG, Northcutt RG (1984b) Primary projections of the trigeminal nerve in two species of sturgeon: Acipenser oxyrhynchus and Scaphirhynchus platorynchus. J Morhpol 182: 125–136.

    CAS  Google Scholar 

  • Norris HW (1925) Observations upon the peripheral distribution of the cranial nerves of certain ganoid fishes (Amia, Lepidosteus, Polyodon, Scaphirhynchus and Acipenser). J Comp Neurol 39: 345–432.

    Article  Google Scholar 

  • Norris HW, Hughes SP (1920) The cranial, occipital, and anterior spinal nerves of the dogfish, Squalus acanthias. J Comp Neurol 31: 293–401.

    Article  Google Scholar 

  • Northcutt RG (1979a) Experimental determination of the primary trigeminal projections in lampreys. Brain Res 163: 323–327.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1979b) Central projections of the eighth nerve in lampreys. Brain Res 167: 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1980) Central auditory pathways in anamniotic vertebrates. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp 79–118.

    Google Scholar 

  • Northcutt RG (1984) Evolution of the vertebrate nervous system: Patterns and processes. Am Zool 24: 701–716.

    Google Scholar 

  • Northcutt RG (1985a) Central nervous system phylogeny: Evaluation of hypotheses. In: Duncker H-R, Fleischer G (eds) Functional Morphology in Vertebrates. Stuttgart: Gustav Fischer, pp 497–505.

    Google Scholar 

  • Northcutt RG (1985b) The brain and sense organs of the earliest vertebrates: reconstruction of a morphotype. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary Biology of Primitive Fishes. New York: Plenum, pp 81–112.

    Google Scholar 

  • Northcutt RG (1986a) Evolution of the octavolateralis system: evaluation and heuristic value of phylogenetic hypotheses. In: Ruben RW, Van De Water TR, Rubel EW (eds) The Biology of Change in Otolaryngology. New York: Elsevier, pp 3–14.

    Google Scholar 

  • Northcutt RG (1986b) Electroreception in non-teleost bony fishes. In: Bullock TH, Heiligenberg W (eds) Electroreception. New York: Wiley, pp 257–285.

    Google Scholar 

  • Northcutt RG (1988) Sensory and other neural traits and the adaptationist program: mackerels of San Marco? In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp 869–883.

    Google Scholar 

  • Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 58: 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Ørvig T (1960) New finds of acanthodians, arthrodires, crossopterygians, ganoids and dipnoans in the upper middle Devonian calcereous flags (Oberer Plattenkalk) of the Bergisch Gladbach-Paffrath trough. Palanotol Z 34: 295–335.

    Google Scholar 

  • Panchen AL, Smithson TR (1987) Character diagnosis, fossils and the origin of tetrapods. Biol Rev 62: 341–438.

    Article  Google Scholar 

  • Pehrson T (1922) Some points in the cranial development of teleostomian fishes. Acta Zool 3: 1–63.

    Article  Google Scholar 

  • Pehrson T (1944) The development of latero-sensory canal bones in the skull of Esox lucius. Acta Zool 25: 135–157.

    Article  Google Scholar 

  • Pehrson T (1945) The system of pit organ lines in Gymnarchus niloticus. Acta Zool 26: 1–8.

    Article  Google Scholar 

  • Pehrson T (1947) Some new interpretations of the skull in Polypterus. Acta Zool 28: 399–345.

    Article  Google Scholar 

  • Pehrson T (1949) The ontogeny of the lateral line system in the head of dipnoans. Acta Zool 30: 153–182.

    Article  Google Scholar 

  • Pinkus F (1895) Die Hirnnerven des Protopterus annectens. Morphol Arbeit 4: 275–346.

    Google Scholar 

  • Platt JB (1896) Ontogenetic differentiations of the ectoderm in Necturus. J Microsc Sci 38: 485–547.

    Google Scholar 

  • Pollard HB (1892) The lateral line system in siluroids. Zool Jahrbuch Anat 5: 525–551.

    Google Scholar 

  • Puzdrowski RL (1987) The peripheral distribution and central projections of the sensory rami of the facial sensory nerve in goldfish, Carassius auratus. J Comp Neurol 259: 382–392.

    Article  PubMed  CAS  Google Scholar 

  • Puzdrowski RL (1988) The peripheral distribution and central projections of the trigeminal, facial and lateral line nerves in goldfish, Carassius auratus. Ph.D. Dissertation, University of Michigan, Ann Arbor.

    Google Scholar 

  • Robertson GM (1938) The Tremataspidae. Am J Sci 35: 172–206.

    Article  Google Scholar 

  • Romer AS (1970) The Vertebrate Body, 4th Ed. Philadelphia: Saunders.

    Google Scholar 

  • Ronan M, Northcutt RG (1987) Primary projections of the lateral line nerves in adult lampreys. Brain Behav Evol 30: 62–81.

    Article  PubMed  CAS  Google Scholar 

  • Rosen DE, Forey PL, Gardiner BG, Patterson C (1981) Lungfishes, tetrapods, paleontology, and plesiomorphy. Bull Am Mus Nat Hist 167: 163–275.

    Google Scholar 

  • Ruud G (1920) Uber Hautsinnesorgane bei Spinax niger Bon. II. Die embryologische Entwicklung. Zool Jahrb Anat Ontog 41: 459–546.

    Google Scholar 

  • Smith IC (1957) New restorations of the heads of Pharyngolepis oblongus Kiaer and Pharyngolepis kiaeri Sp. nov., with a note on their lateral-line systems. Norsk Geol Tidsskrift 37: 373–417.

    Google Scholar 

  • Song J (1984) The distribution of lateral line receptors in garfish (Holostei). Am Zool 24: 134A.

    Google Scholar 

  • Song J (1986) Peripheral distribution of the lateral line nerves of garfish (Ginglymoidi). Am Zool 26: 85A.

    Google Scholar 

  • Srivastava CBL, Srivastava MDL (1968) Lateral line organs in some teleosts: Cirrhina mrigala Ham. Buch. (Cyprinidae), Ophicephalus (Channa) punctatus Bloch (Characidae) and Gobius striatus Day (Gobiidae) J Comp Neurol 134: 339–352.

    Article  PubMed  CAS  Google Scholar 

  • Steno (Stennonis) N (1664) De muscalis et glandulis observationum specimen cum duabus epistolis quarum una ad. Guil. Pisonum de anatome Rajae, etc. Halniae (cited by Johnson 1917).

    Google Scholar 

  • Stensiö E (1925) On the head of the macropetalichthyids, with certain remarks on the head of the other arthrodires. Pub Field Mus Nat Hist (Geol) 4: 89–197.

    Google Scholar 

  • Stensiö E (1927) The Downtonian and Devonian vertebrates of Spitsbergen. I. Cephalaspidae. Skr Svalb Ish No 12: 1–391.

    Google Scholar 

  • Stensiö E (1932) The Cephalaspids of Great Britain. London: British Museum (Natural History).

    Google Scholar 

  • Stensiö E (1947) The sensory lines and dermal bones of the cheek in fishes and amphibians. K Svenska Vet-AT Hdl Oefv 24: 1–195.

    Google Scholar 

  • Stensiö E (1958) Les cyclostomes fossiles ou ostracodermes. In: Grassé P-P (ed) Traité de Zoologie, Vol 13. Paris: Masson, pp 173–425.

    Google Scholar 

  • Stone LS (1922) Experiments on the development of the cranial ganglia and the lateral line sense organs in Amblystoma punctatum. J Exp Zool 35: 421–496.

    Article  Google Scholar 

  • Stone LS (1933) The development of lateral-line sense organs in amphibians observed in living and vital-stained preparations. J Comp Neurol 57: 507–540.

    Article  Google Scholar 

  • Strong OS (1895) The cranial nerves of amphibia. J Morphol 10: 101–231.

    Article  Google Scholar 

  • Watson DMS (1937) The ancantodian fishes. R soc Lond Phil Trans B 228: 49–146.

    Article  Google Scholar 

  • Webb JF (1988) Comparative morphology and evolution of the lateral line system in the labroid fishes (Pisces: Perciformes). Ph.D. Dissertation, Boston University, Boston.

    Google Scholar 

  • Westoll TS (1963) On the evolution of the dipnoi. In: Jepsen GL, Mayr E, Simpson GG (eds) Genetics, Paleontology, and Evolution. New York: Atheneum, pp 121–184.

    Google Scholar 

  • White EI (1935) The Ostracoderm Pteraspis Kner and the relationships of the agnathous vertebrates. R Soc Lond Phil Trans B 225: 381–457.

    Article  Google Scholar 

  • White EI (1946) The genus Phialaspis and the “Psammosteus limestones.” Q J Geol Soc Lond 101: 207–242.

    Article  Google Scholar 

  • Wiley EO (1981) Phylogenetics. New York: Wiley.

    Google Scholar 

  • Winklbauer R. Hausen P (1983) Development of the lateral line system in Xenopus laevis. I. Normal development and cell movement in the supraorbital system. J Embryol Exp Morphol 76: 265–281.

    PubMed  CAS  Google Scholar 

  • Worthington J (1906) The descriptive anatomy of the brain and cranial nerves of Bdellostoma dombeyi. Q J Microsc Sci 49: 137–181.

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97–159.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Northcutt, R.G. (1989). The Phylogenetic Distribution and Innervation of Craniate Mechanoreceptive Lateral Lines. In: Coombs, S., Görner, P., Münz, H. (eds) The Mechanosensory Lateral Line. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3560-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3560-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8157-3

  • Online ISBN: 978-1-4612-3560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics