Skip to main content
Log in

Calcium responses of circadian pacemaker neurons of the cockroach Rhyparobia maderae to acetylcholine and histamine

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The accessory medulla (aMe) is the pacemaker that controls circadian activity rhythms in the cockroach Rhyparobia maderae. Not much is known about the classical neurotransmitters of input pathways to the cockroach circadian system. The circadian pacemaker center receives photic input from the compound eye, via unknown excitatory and GABAergic inhibitory entrainment pathways. In addition, neuropeptidergic inputs couple both pacemaker centers. A histamine-immunoreactive centrifugal neuron connects the ventral aMe with projection areas in the lateral protocerebrum and may provide non-photic inputs. To identify neurotransmitters of input pathways to the circadian clock with Fura-2-dependent Ca2+ imaging, primary cell cultures of the adult aMe were stimulated with acetylcholine (ACh), as the most prominent excitatory, and histamine, as common inhibitory neurotransmitter. In most of aMe neurons, ACh application caused dose-dependent increases in intracellular Ca2+ levels via ionotropic nicotinic ACh receptors. These ACh-dependent rises in Ca2+ were mediated by mibefradil-sensitive voltage-activated Ca2+ channels. In contrast, histamine application decreased intracellular Ca2+ levels in only a subpopulation of aMe cells via H2-type histamine receptor chloride channels. Thus, our data suggest that ACh is part of the light entrainment pathway while histamine is involved in a non-photic input pathway to the ventral circadian clock of the Madeira cockroach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benquet P, Frere S, Pichon Y, Tiaho F (2000) Properties and development of calcium currents in embryonic cockroach neurons. Neurosci Lett 294:49–52

    Article  PubMed  CAS  Google Scholar 

  • Bornhauser BC, Meyer EP (1997) Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect. Cell Tissue Res 287:211–221

    Article  PubMed  CAS  Google Scholar 

  • Buchner E, Buchner S, Burg MG, Hofbauer A, Pak WL, Pollack I (1993) Histamine is a major mechanosensory neurotransmitter candidate in Drosophila melanogaster. Cell Tissue Res 273:119–125

    Article  PubMed  CAS  Google Scholar 

  • Eaton SJ, Cote NK, Harrington ME (1995) Histamine synthesis inhibition reduces light-induced phase shifts of circadian rhythms. Brain Res 695:227–230

    Article  PubMed  CAS  Google Scholar 

  • Eaton SJ, Eoh S, Meyer J, Hoque S, Harrington ME (1996) Circadian rhythm photic phase shifts are not altered by histamine receptor antagonists. Brain Res Bull 41:227–229

    Article  PubMed  CAS  Google Scholar 

  • Fleck MW, Thomson JL, Hough LB (2012) Histamine-gated ion channels in mammals? Biochem Pharmacol 83:1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Geng C, Leung HT, Skingsley DR, Iovchev MI, Yin Z, Semenov EP, Burg MG, Hardie RC, Pak WL (2002) The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J Biol Chem 277:42113–42120

    Article  Google Scholar 

  • Gisselmann G, Pusch H, Hovemann BT, Hatt H (2002) Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nat Neurosci 5:11–12

    Article  PubMed  CAS  Google Scholar 

  • Hanin I, Massarelli R, Costa E (1970) Acetylcholine concentrations in rat brain: diurnal oscillation. Science 170:341–342

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Camp Physiol [A] 161:201–213

    Article  CAS  Google Scholar 

  • Hardie RC (1988) Effects of antagonists on putative histamine receptors in the first visual neuropile of the housefly Musca domestica. J Exp Biol 138:221–241

    CAS  Google Scholar 

  • Hardie RC (1989) A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339:704–706

    Article  PubMed  CAS  Google Scholar 

  • Hofer S, Homberg U (2006a) Evidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae. J Exp Biol 209:2794–2803

    Article  PubMed  CAS  Google Scholar 

  • Hofer S, Homberg U (2006b) Orcokinin immunoreactivity in the accessory medulla of the cockroach Leucophaea maderae. Cell Tissue Res 325:589–600

    Article  PubMed  CAS  Google Scholar 

  • Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209

    Article  PubMed  CAS  Google Scholar 

  • Homberg U, Hildebrand JG (1991) Histamine-immunoreactive neurons in the midbrain and subesophageal ganglion of the sphinx moth Manduca sexta. J Comp Neural 307:647–657

    Article  CAS  Google Scholar 

  • Homberg U, Reischig T, Stengl M (2003) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20:577–590

    Article  PubMed  CAS  Google Scholar 

  • Huang ZL, Urade Y, Hayaishi O (2011) Key roles of the histaminergic system in sleep–wake regulation. Sleep Biol Rhythm 9:34–37

    Article  Google Scholar 

  • Hut RA, van der Zee EA (2011) The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res 221:466–480

    Article  PubMed  CAS  Google Scholar 

  • Ignell R (2001) Monoamines and neuropeptides in antennal lobe interneurons of the desert locust, Schistocerca gregaria: an immunocytochemical study. Cell Tissue Res 306:143–156

    Article  PubMed  CAS  Google Scholar 

  • Itowi N, Yamatodani A, Mochizuki T, Wada H (1991) Effects of intracerebroventricular histamine injection on circadian activity phase entrainment during rapid illumination changes. Neurosci Lett 123:53–56

    Article  PubMed  CAS  Google Scholar 

  • Jackson FR, Schroeder AJ, Roberts MA, McNeil GP, Kume K, Akten B (2001) Cellular and molecular mechanisms of circadian control in insects. J Insect Physiol 47:822–842

    Article  Google Scholar 

  • Jacobs EH, Yamatodani A, Timmerman H (2000) Is histamine the final neurotransmitter in the entrainment of circadian rhythms in mammals? Trends Pharmacol Sci 21:293–298

    Article  PubMed  CAS  Google Scholar 

  • Johard HA, Yoishii T, Dircksen H, Cusumano P, Rouyer F, Helfrich-Förster C, Nässel DR (2009) Peptidergic clock neurons in Drosophila: ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J Comp Neurol 516:59–73

    Article  PubMed  CAS  Google Scholar 

  • Kahsai L, Winther AM (2011) Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters. J Comp Neurol 519:290–315

    Article  PubMed  CAS  Google Scholar 

  • Kahsai L, Martin JR, Winther AM (2010) Neuropeptides in the Drosophila central complex in modulation of locomotor behavior. J Exp Biol 213:2256–2265

    Article  PubMed  CAS  Google Scholar 

  • Keene AC, Mazzoni EO, Zhen J, Younger MA, Yamaguchi S, Blau J, Desplan C, Sprecher SG (2011) Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. J Neurosci 31:6527–6534

    Article  PubMed  CAS  Google Scholar 

  • Lelito KR, Shafer OT (2012) Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila’s circadian clock neuron network. J Neurophysiol 107:2096–2108

    Article  PubMed  CAS  Google Scholar 

  • Liou SY, Shibata S, Yamakawa K, Ueki S (1983) Inhibitory and excitatory effects of histamine on suprachiasmatic neurons in rat hypothalamic slice preparation. Neurosci Lett 41:109–113

    Article  PubMed  CAS  Google Scholar 

  • Loesel R, Homberg U (1999) Histamine-immunoreactive neurons in the brain of the cockroach Leucophaea maderae. Brain Res 842:408–418

    Article  PubMed  CAS  Google Scholar 

  • Loesel R, Homberg U (2001) Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae. J Comp Neurol 439:193–207

    Article  PubMed  CAS  Google Scholar 

  • Mash DC, Flynn DD, Kalinoski L, Potter LT (1985) Circadian variations in radioligand binding to muscarine receptors in rat brain dependent upon endogenous agonist occupation. Brain Res 331:35–38

    Article  PubMed  CAS  Google Scholar 

  • McCarthy EV, Wu Y, Decarvalho T, Brandt C, Cao G, Nitabach MN (2011) Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J Neurosci 31:8181–8193

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Murakami DM, Fuller CA (1987) The response of suprachiasmatic neurons of the rat hypothalamus to photic and nicotinic stimuli. J Neurosci 7:978–986

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Yamatodani A, Okakura K, Horii A (1992) Circadian rhythm of histamine release from the hypothalamus of freely moving rats. Physiol Behav 51:391–394

    Article  PubMed  CAS  Google Scholar 

  • Monastirioti M (1999) Biogenic amine systems in the fruit fly Drosophila melanogaster. Microsc Res Tech 45:106–121

    Article  PubMed  CAS  Google Scholar 

  • Moore RY (1983) Organization and function of a central nervous system oscillator: the suprachiasmatic nucleus. Fed Proc 42:2783–2789

    PubMed  CAS  Google Scholar 

  • Morley BJ, Garner LL (1990) Light–dark variation in response to chronic nicotine treatment and the density of hypothalamic alpha-bungarotoxin receptors. Pharmacol Biochem Behav 37:239–245

    Article  PubMed  CAS  Google Scholar 

  • Nashmi R, Lester HA (2006) CNS localization of neuronal nicotinic receptors. J Mol Neurosci 30:181–184

    Article  PubMed  CAS  Google Scholar 

  • Nässel DR, Elekes K (1992) Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-cell immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res 267:147–167

    Article  PubMed  Google Scholar 

  • Nässel DR, Holmqvist MH, Hardie RC, Håkanson R, Sundler F (1988) Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies Calliphora erythrocephala and Musca domestica. Cell Tissue Res 253:639–646

    Article  PubMed  Google Scholar 

  • Nishiitsutsuji-Uwo J, Pittendrigh CS (1968) Central nervous system control of circadian rhythmicity in the cockroach: III. The optic lobes, locus of the driving oscillation? Zeitschrift für vergleichende Physiologie 58:14–46

    Article  Google Scholar 

  • Nordberg A, Wahlström G (1980) Diurnal fluctuation in striatal choline acetyltransferase activity and strain difference in brain protein content of the rat. Acta Physiol Scand 108:385–388

    Article  PubMed  CAS  Google Scholar 

  • Page TL (1978) Interactions between bilaterally paired components of the cockroach circadian system. J Comp Physiol A 124:225–236

    Article  Google Scholar 

  • Page TL (1982) Transplantation of the cockroach circadian pacemaker. Science 216:73–75

    Article  PubMed  CAS  Google Scholar 

  • Page TL, Caldarola PC, Pittendrigh CS (1977) Mutual entrainment of bilaterally distributed circadian pacemakers. Proc Natl Acad Sci USA 58:14–46

    Google Scholar 

  • Pantazis A, Segaran A, Liu CH, Nikolaev A, Rister J, Thum AS, Roeder T, Semenov E, Juusola M, Hardie RC (2008) Distinct roles for two histamine receptors (hclA and hclB) at the Drosophila photoreceptor synapse. J Neurosci 28:7250–7259

    Article  PubMed  CAS  Google Scholar 

  • Petri B, Stengl M (1999) Presumptive insect circadian pacemakers in vitro: immunocytochemical characterization of cultured pigment-dispersing hormone-immunoreactive neurons of Leucophaea maderae. Cell Tissue Res 296:635–643

    Article  PubMed  CAS  Google Scholar 

  • Petri B, Stengl M, Wurden S, Homberg U (1995) Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell Tissue Res 282:3–19

    Article  PubMed  CAS  Google Scholar 

  • Petri B, Homberg U, Loesel R, Stengl M (2002) Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. J Exp Biol 205:1459–1469

    PubMed  CAS  Google Scholar 

  • Pirvola U, Tuomisto L, Yamatodani A, Panula P (1988) Distribution of histamine in the cockroach brain and visual system: an immunocytochemical and biochemical study. J Comp Neurol 276:514–526

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1981) Circadian systems: general perspective. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol. 4: biological rhythms. Plenum Press, New York, pp 57–80

    Google Scholar 

  • Pollack I, Hofbauer A (1991) Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster. Cell Tissue Res 266:391–398

    Article  PubMed  CAS  Google Scholar 

  • Reischig T, Stengl M (1996) Morphology and pigment-dispersing hormone (PDH)-immunocytochemistry of the accessory medulla, the presumptive circadian pacemaker of the cockroach Leucophaea maderae: a light- and electron-microscopical study. Cell Tissue Res 255:305–319

    Article  Google Scholar 

  • Reischig T, Stengl M (2002) Optic lobe commissures in a three-dimensional brain model of the cockroach Leucophaea maderae: a search for the circadian coupling pathways. J Comp Neurol 443:388–400

    Article  PubMed  Google Scholar 

  • Reischig T, Stengl M (2003) Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206:1877–1886

    Article  PubMed  Google Scholar 

  • Reischig T, Stengl M (2004) Pigment-dispersing hormone (PDH)-immunoreactive neurons form direct coupling pathways between the bilateral symmetric circadian pacemakers of the cockroach Leucophaea maderae. Cell Tissue Res 318:553–564

    Article  PubMed  CAS  Google Scholar 

  • Roberts SK (1965) Photoreception and entrainment of cockroach activity rhythms. Science 148:958–959

    Article  PubMed  CAS  Google Scholar 

  • Roberts SK (1974) Circadian rhythms in cockroaches. Effects of optic lobe lesions. J Comp Physiol 88:21–30

    Article  Google Scholar 

  • Roeder T (2003) Metabotropic histamine receptors—nothing for invertebrates? Eur J Pharmacol 466:85–90

    Article  PubMed  CAS  Google Scholar 

  • Schiebeler H, von Mayersbach H (1974) Circadian variations of acetylcholine esterase (E.C.3.1.1.7) in rat brains. Int J Chronobiol 2:281–289

    PubMed  CAS  Google Scholar 

  • Schneider N-L, Stengl M (2005) Pigment-dispersing factor and GABA synchronize insect circadian clock cells. J Neurosci 25:5138–5147

    Article  PubMed  CAS  Google Scholar 

  • Schulze J, Neupert S, Schmidt L, Predel R, Lamkemeyer T, Homberg U, Stengl M (2012) Myoinhibitory peptides in the brain of the cockroach Leucophaea maderae and colocalization with pigment-dispersing factor in circadian peacemaker cells. J Comp Neurol 520:1078–1097

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71:1–51

    PubMed  CAS  Google Scholar 

  • Söhler S, Neupert S, Predel R, Nichols R, Stengl M (2007) Localization of leucomyosuppressin in the brain and circadian clock of the cockroach Leucophaea maderae. Cell Tissue Res 328:443–452

    Article  PubMed  Google Scholar 

  • Söhler S, Neupert S, Predel R, Stengl M (2008) Examination of the role of FMRFamide-related peptides in the circadian clock of the cockroach Leucophaea maderae. Cell Tissue Res 332:257–269

    Article  Google Scholar 

  • Söhler S, Stengl M, Reischig T (2011) Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. Cell Tissue Res 343:559–577

    Article  Google Scholar 

  • Stehle J (1991) Effects of histamine on spontaneous electrical activity of neurons in rat suprachiasmatic nucleus. Neurosci Lett 130:217–220

    Article  PubMed  CAS  Google Scholar 

  • Stengl M, Homberg U (1994) Pigment-dispersing hormone-immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. J Comp Physiol A 175:203–213

    Article  PubMed  CAS  Google Scholar 

  • Stephan FK, Berkley KJ, Moss RL (1981) Efferent connections of the rat suprachiasmatic nucleus. Neuroscience 6:2625–2641

    Article  PubMed  CAS  Google Scholar 

  • Stuart AE (1999) From fruit flies to barnacles, histamine is the neurotransmitter of arthropod photoreceptors. Neuron 22:431–433

    Article  PubMed  CAS  Google Scholar 

  • Stuart AE, Borycz J, Meinertzhagen IA (2007) The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Prog Neurobiol 82:202–227

    Article  PubMed  CAS  Google Scholar 

  • Tuomisto L (1991) Involvement of histamine in circadian and other rhythms. In: Watanabe T, Wada H (eds) Histaminergic neurons: morphology and function. CRC Press, Boca Raton, pp 283–295

    Google Scholar 

  • Van der Zee EA, Luiten PGM (1999) Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 58:409–471

    Article  PubMed  Google Scholar 

  • Van der Zee EA, Streefland C, Strosberg AD, Schroder H, Luiten PG (1991) Colocalization of muscarinic and nicotinic receptors in cholinoceptive neurons of the suprachiasmatic region in young and aged rats. Brain Res 542:348–352

    Article  PubMed  Google Scholar 

  • Van der Zee EA, Biemans BA, Gerkema MP, Daan S (2004) Habituation to a test apparatus during associative learning is sufficient to enhance muscarinic acetylcholine receptor-immunoreactivity in rat suprachiasmatic nucleus. J Neurosci Res 78:508–519

    Article  PubMed  Google Scholar 

  • Vijayalakshmi S, Mohan PM, Babu KS (1977) Circadian rhythmicity in the nervous system of the cockroach, Periplaneta americana. J Insect Physiol 23:195–202

    Article  Google Scholar 

  • Wegener C, Hamasaka Y, Nässel DR (2004) Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured PDF-containing clock neurons of Drosophila. J Neurophysiol 91:912–923

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Stengl M (2012) Ca2+-dependent ion channels underlying spontaneous activity in insect circadian pacemaker neurons. Eur J Neurosci 36(8):3021–3029

    Article  PubMed  Google Scholar 

  • Werckenthin A, Derst C, Stengl M (2012) Sequence and expression of per, tim1, and cry2 genes in the Madeira cockroach Rhyparobia maderae. J Biol Rhythms 27(6):453–466

    Article  PubMed  CAS  Google Scholar 

  • Yang JJ, Wang YT, Cheng PC, Kuo YJ, Huang RC (2010) Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus. J Neurophysiol 103:1397–1409

    Article  PubMed  CAS  Google Scholar 

  • Yoshii T, Wülbeck C, Sehadova H, Veleri S, Bichler D, Stanewsky R, Helfrich-Förster C (2009) The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila’s clock. J Neurosci 25:2597–2610

    Article  Google Scholar 

  • Zheng Y, Hirschberg B, Yuan J, Wang AP, Hunt DC, Ludmerer SW, Schmatz DM, Cully DF (2002) Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J Biol Chem 277:2000–2005

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Stengl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baz, ES., Wei, H., Grosshans, J. et al. Calcium responses of circadian pacemaker neurons of the cockroach Rhyparobia maderae to acetylcholine and histamine. J Comp Physiol A 199, 365–374 (2013). https://doi.org/10.1007/s00359-013-0800-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0800-3

Keywords

Navigation