Skip to main content
Log in

Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In this study, immunohistochemistry on cryostat sections is used to demonstrate anti-histamine immunoreactivity in the Drosophila brain. The results support earlier findings that histamine is probably a transmitter of insect photoreceptors. It is further shown that, in Drosophila, all imaginal photoreceptors including receptor type R7 are anti-histamine immunoreactive, whereas the larval photoreceptors do not seem to contain histamine. In addition to the photoreceptors, fibres in the antennal nerve and approximately 12 neurons in each brain hemisphere show strong histamine-like immunoreactivity. These cells arborize extensively in large parts of the central brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolwig N (1945/46) Senses and sense organs of the anterior end of the house fly larvae. Vidensk Medd Dan Naturhist Foren Khobenhavn 109:81–217

    Google Scholar 

  • Buchner E, Buchner S, Crawford G, Mason WT, Salvaterra PM, Sattelle DB (1986) Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster. Cell Tissue Res 246:57–62

    Google Scholar 

  • Buchner E, Bader R, Buchner S, Cox J, Emson PC, Flory E, Heizemann CW, Hemm S, Hofbauer A, Oertel WH (1988) Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster. I. Wildtype visual system. Cell Tissue Res 253:357–370

    Google Scholar 

  • Cagan RL, Ready DF (1989) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362

    Google Scholar 

  • Campos-Ortega JA, Jürgens G, Hofbauer A (1979) Cell clones and pattern formation: studies on sevenless, a mutant of Drosophila melanogaster Roux Arch 186:27–50

    Google Scholar 

  • Datum KH, Weiler R, Zettler F (1986) Immunocytochemical demonstration of gamma-aminobutyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system. J Comp Physiol [A] 159:241–249

    Google Scholar 

  • Elias MS, Evans PD (1983) Histamine in the insect nervoussystem: distribution, synthesis and metabolism. J Neurochem 41:562–568

    Google Scholar 

  • Elias MS, Evans PD (1984) Autoradiographic localization of 3H-histamine accumulation by the visual system of the locust. Cell Tissue Res 238:105–112

    Google Scholar 

  • Fischbach K-F, Dittrich A (1989) The optic lobe of Drosophila melanogaster. Part I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475

    Google Scholar 

  • Fortini ME, Rubin GM (1990) Analysis of cis-acting requirements of the Rh3 and Rh4 genes reveals a bipartite organization to rhodopsin promotors in Drosophila melanogaster. Genes Dev 4:444–463

    Google Scholar 

  • Griffiths GW, Boschek CB (1976) Rapid degeneration of visual fibres following retinal lesions in the dipteran compound eye. Neurosci Lett 3:253–258

    Google Scholar 

  • Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J Comp Physiol [A] 154:157–165

    Google Scholar 

  • Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol [A] 161:201–213

    Google Scholar 

  • Hardie RC (1988) Effects of antagonists on putative histamine receptors in the first visual neuropile of the housefly (Musca domestica). J Exp Biol 138:221–241

    Google Scholar 

  • Hardie RC (1989) A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339:704–706

    Google Scholar 

  • Hofbauer A, Buchner E (1989) Does Drosophila have seven eyes? Naturwissenschaften 76:335–336

    Google Scholar 

  • Homberg U, Hildebrand JG (1991) Histamine-immunoreactive neurons in the midbrain and suboesophageal ganglion of the sphinx moth Manduca sexta. J Comp Neurol 307:647–657

    Google Scholar 

  • Joseph DR, Sullivan PM, Wang Y-M, Kozak C, Fenstermacher DA, Behrendsen ME, Zahnow CA (1990) Characterization and expression of the complementary DNA encoding rat histidine decarboxylase. Proc Natl Acad Sci USA 87:733–737

    Google Scholar 

  • Nässel DR, Holmquist MH, Hardie RC, Hakanson R, Sundler F (1988) Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies Calliphora erythrocephala and Musca domestica. Cell Tissue Res 253:639–646

    Google Scholar 

  • Nässel DR, Pirvola U, Panula P (1990) Histamine-like immunoreactive neurons innervating putative neurohaemal areas and central neuropile in the thoraco-abdominal ganglia of the flies Drosophila and Calliphora. J Comp Neurol 197:525–536

    Google Scholar 

  • Pirvola U, Tuomisto L, Yamatodani A, Panula P (1988) Distribution of histamine in the cockroach brain and visual system: an immunocytochemical and biochemical study. J Comp Neurol 276:514–526

    Google Scholar 

  • Power ME (1943) The brain of Drosophila melanogaster. J Morphol 72:517–559

    Google Scholar 

  • Sarthy PV (1989) Histamine: a neurotransmitter candidate for photoreceptors in Drosophila melanogaster. Invest Ophthalmol Visual Sci 30 S:290

    Google Scholar 

  • Schlemermayer E, Schütte M, Ammermüller J (1989) Immunocytochemical and electrophysiological evidence that locust ocellar photoreceptors contain and release histamine. Neurosci Lett 99:73–78

    Google Scholar 

  • Simmons PJ, Hardie RC (1988) Evidence that histamine is a neurotransmitter of photoreceptors in the locust ocellus. J Exp Biol 138:205–219

    Google Scholar 

  • Steller H, Fischbach K-F, Rubin GM (1987) Disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell 50:1139–1153

    Google Scholar 

  • Stocker RF, Lawrence PA (1981) Sensory projections from normal and homeotically transformed antennae in Drosophila. Dev Biol 82:224–237

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld HJ, Wunderer H (1985) Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light. Cell Tissue Res 242:163–178

    Google Scholar 

  • Tomlinson A, Ready D (1986) Sevenless: a cell specific homeotic mutation of the Drosophila eye. Science 231:400–402

    Google Scholar 

  • Wada S (1974) Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125

    Google Scholar 

  • Wolf R, Gebhardt B, Gademann R, Heisenberg M (1980) Polarization sensitivity of course control in Drosophila melanogaster. J Comp Physiol 139:177–191

    Google Scholar 

  • Wunderer H, Smola U (1982a) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera: Calliphoridae): an eye region specialized for the detection of polarized light. Int J Insect Morphol Embryol 11:25–38

    Google Scholar 

  • Wunderer H, Smola U (1982b) Morphological differentiation of the central visual cells R7/R8 in various regions of blowfly eye. Tissue Cell 14:341–358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollack, I., Hofbauer, A. Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster . Cell Tissue Res 266, 391–398 (1991). https://doi.org/10.1007/BF00318195

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318195

Key words

Navigation