Skip to main content
Log in

Ultrabroadband infrared chirped mirrors characterized by a white-light Michelson interferometer

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We fabricated and characterized a pair of ultrabroadband chirped mirrors (CMs) in the infrared. These mirrors provide smooth control of the spectral phases in the wavelength range 1200–2200 nm, nearly one octave of a bandwidth. A scanning-type white-light Michelson interferometer was developed to measure spectral dispersion. We confirmed that the dispersion of the CMs well reproduced the designed dispersion. Furthermore, the CMs’ damage threshold was measured to be \({>}390\,\hbox {mJ}/\hbox {cm}^2\) for 10-fs pulses, which corresponds to \({>}37\,\hbox {TW}/\hbox {cm}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Szipöcs, C. Spielmann, F. Krausz, K. Ferencz, Opt. Lett. 19, 201 (1994)

    Article  ADS  Google Scholar 

  2. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, Opt. Lett. 22, 522 (1997)

    Article  ADS  Google Scholar 

  3. P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)

    Article  Google Scholar 

  4. M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)

    Article  ADS  Google Scholar 

  5. P.B. Corkum, Phys. Rev. Lett 71, 1994 (1993)

    Article  ADS  Google Scholar 

  6. X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, F. Krausz, Opt. Express 17, 62 (2009)

    Article  ADS  Google Scholar 

  7. B.E. Schmidt, P. Béjot, M. Giguère, A.D. Shiner, C. Trallero-Herrero, É. Bisson, J. Kasparian, J.P. Wolf, D.M. Villeneuve, J.C. Kieffer, P.B. Corkum, F. Légaré, Appl. Phys. Lett. 96, 121109 (2010)

    Article  ADS  Google Scholar 

  8. J. Moses, S.-W. Huang, K.-H. Hong, O. Mücke, E. Falcão-Filho, A. Benedick, F.Ö. Ilday, A. Dergachev, J.A. Bolger, B.J. Eggleton, F.X. Kärtner, Opt. Lett. 34, 1639 (2009)

    Article  ADS  Google Scholar 

  9. N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, J. Itatani, Opt. Lett. 37, 4182 (2012)

    Article  ADS  Google Scholar 

  10. E.J. Takahashi, P. Lan, O.D. Mücke, Y. Nabekawa, K. Midorikawa, Phys. Rev. Lett. 104, 233901 (2010)

    Article  ADS  Google Scholar 

  11. T. Popmintchev, M.C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O.D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S.E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M.M. Murnane, H.C. Kapteyn, Science 336, 1287 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, J. Itatani, Nat. Commun. 5, 3331 (2014)

    ADS  Google Scholar 

  13. M. Giguère, B.E. Schmidt, A.D. Shiner, M.A. Houle, H.C. Bandulet, G. Tempea, D.M. Villeneuve, J.C. Kieffer, F. Légaré, Opt. Lett. 34, 1894 (2009)

    Article  ADS  Google Scholar 

  14. F. Kärtner, U. Morgner, R. Ell, T. Schibli, J. Fujimoto, E. Ippen, V. Scheuer, G. Angelow, T. Tschudi, J. Opt. Soc. Am. B 18, 882 (2001)

    Article  ADS  Google Scholar 

  15. K. Naganuma, K. Mogi, H. Yamada, Opt. Lett. 15, 393 (1990)

    Article  ADS  Google Scholar 

  16. S. Diddams, J.C. Diels, J. Opt. Soc. Am. B 13, 1120 (1996)

    Article  ADS  Google Scholar 

  17. T. Fuji, M. Arakawa, T. Hattori, H. Nakatsuka, Rev. Sci. Instrum. 69, 2854 (1998)

    Article  ADS  Google Scholar 

  18. T. Imran, K.H. Hong, T.J. Yu, C.H. Nam, Rev. Sci. Instrum. 75, 2266 (2004)

    Article  ADS  Google Scholar 

  19. F. Reynaud, F. Salin, A. Barthelemy, Opt. Lett. 14, 275 (1989)

    Article  ADS  Google Scholar 

  20. L. Lepetit, G. Cheriaux, M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995)

    Article  ADS  Google Scholar 

  21. A. Kovács, R. Szipöcs, K. Osvay, Z. Bor, Opt. Lett. 20, 788 (1995)

    Article  ADS  Google Scholar 

  22. M. Trubetskov, M. von Pechmann, I. Angelov, K. Vodopyanov, F. Krausz, V. Pervak, Opt. Express 21, 6658 (2013)

    Article  ADS  Google Scholar 

  23. I.H. Malitson, Appl. Opt. 2, 1103 (1963)

    Article  ADS  Google Scholar 

  24. A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 1627 (1964)

    Article  ADS  Google Scholar 

  25. P.A. Gorry, Anal. Chem. 62, 570 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by Grant-in-Aid for Scientific Research (S) Grant Number 23226003, Grant-in-Aid for Young Scientists (B) Grant Number 25790063, and Program for Leading Graduate Schools (MERIT) by Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Kaneshima.

Appendix: Evaluation of GDD

Appendix: Evaluation of GDD

When calculating GDD from a spectral response function \(H(\omega )\), systematic error may occur in the differentiation process of the phase. The smoothing process is occasionally needed to obtain reasonable GDDs because of the low signal-to-noise ratios of IR detectors. The selection of the smoothing methods is critical to accurately evaluate GDDs, especially when the phase contains fast oscillation. We found that the Savitzky-Golay method [24, 25] is favorable in our case. Figure 7 compares the GDDs obtained by two differentiation methods: direct differentiation and the Savitzky-Golay method with a polynomial order of 6. The nearly identical GDDs suggest that our algorithm is well adapted to evaluate the GDDs from measured cross-correlation signals.

Fig. 7
figure 7

The GDDs obtained by direct differentiation of the designed phase (black curve) and by the Savitzky–Golay method (orange curve)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneshima, K., Sugiura, M., Tamura, K. et al. Ultrabroadband infrared chirped mirrors characterized by a white-light Michelson interferometer. Appl. Phys. B 119, 347–353 (2015). https://doi.org/10.1007/s00340-015-6076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6076-2

Keywords

Navigation