Skip to main content
Log in

Genome size comparison in Colobanthus quitensis populations show differences in species ploidy

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Colobanthus quitensis is the only native dicotyledoneae in the Antarctic; therefore, it is the object of ample research regarding tolerance mechanisms to its extreme habitat. This species also represents a wide geographical distribution, from 68°S to 17°N and from 0 m a.s.l. in the south to 4200 m a.s.l. in the north of its distribution area. As the described habitats for different populations coincide in their extreme abiotic characteristics, there has been increasing interest in studying different populations in recent years, as well as the existence of phenotypic or genetic variability among them. In contrast, very little is known about its genome; knowledge of genome size and ploidy levels allows the development of strategies to generate information in population studies related to structure, gene flow and genetic diversity in order to describe phenotypic characteristics. Several studies have related genome size to the ecological requirements of the species distributed through an ample environmental gradient. For several years now, flow cytometry has become a simple method to determine genome size in a wide variety of species. In this paper, we determine genome size for three C. quitensis populations. The populations of Arctowski and La Marisma (Punta Arenas) have 2C = 1.95 pg, while the Conguillio population reported 2C = 0.84 pg, approximately half as much. This may evidence different ploidy levels between the populations, creating new questions with regard to the number of chromosomes and the possible existence of endopoliploidy. This would be related to the distribution and the adaptive mechanisms of this species throughout its wide distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Acuña-Rodríguez I, Osses R, Cortés-Vásquez J, Torres C, Molina-Montengro MA (2014) Genetic diversity of Colobanthus quitensis across the Drake Passage. Plant Genet Res Charact Util 12:147–150

    Article  Google Scholar 

  • Androsiuk P, Chwedorzeswska K, Szandar K, Giełwanowska I (2015) Genetic variability of Colobanthus quitensis from King George Island (Antarctica). Pol Polar Res 36:281–295

    Google Scholar 

  • Baack EJ (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). Am J Bot 91:1783–1788

    Article  PubMed  Google Scholar 

  • Bascuñán-Godoy L, García-Plazaola J, Bravo LA, Corcuera LJ (2010) Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic. Polar Biol 33:885–896

    Article  Google Scholar 

  • Bascuñán-Godoy L, Sanhueza C, Cuba-Díaz M, Zúñiga GE, Corcuera LJ, Bravo LA (2012) Cold acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunth Bartl (Cariophyllaceae). BMC Plant Biol 12:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107:467–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL, Ma JX, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536

    Article  Google Scholar 

  • Casanova-Katny MA, Bravo L, Molina-Montenegro M, Corcuera LJ, Cavieres LA (2006) Photosynthetic performance of Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in a high-elevation site of the Andes of central Chile. Rev Chil Hist Nat 79:41–53

    Article  Google Scholar 

  • Cavieres LA, Saéz P, Sanhueza C, Sierra-Almeida A, Rabert C, Corcuera LJ, Alberdi M, Bravo LA (2016) Ecophysiological traits of Antarctic vascular plants: their importance in the responses to climate change. Plant Ecol 217:343–358

    Article  Google Scholar 

  • Cordero C (2012) Caracterización y análisis de variabilidad moroflógica y genética en poblaciones de Colobanthus quitensis (KUNTH) Bartl. (Caryophylaceae). [Tesis de Pregrado. Ing. Biotecnología Vegetal]. Universidad de Concepción, Chile 52 pp. http://cisne.bib.udec.cl/

  • Creber HMC, Davies MS, Francis D, Walker HD (1994) Variation in DNA C value in natural populations of Dactylis glomerata L. N Phytol 128:555–561

    Article  CAS  Google Scholar 

  • Cuba-Díaz M, Acuña D, Klagges M, Dollenz O, Cordero C (2013) Colobanthus quitensis de la Marisma, una nueva población para la colección genética de la especie. In: Leppe M, Molina-Montenegro M, González M, MacDonell S, Lavín P, Oses R, Gallardo J, Rivadeneira M, Arata J, Canales R (eds) Avances en Ciencia Antártica Latinoamericana. VII Congreso Latinoamericano de Ciencia Antártica. INACH-CEAZA, Ediciones, pp 436–439

    Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128

    Article  PubMed  Google Scholar 

  • Fay MF, Cowan RS, Leitch IJ (2005) The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fingerprints. Ann Bot 95:237246

    Article  Google Scholar 

  • Galbraith DW (2009) Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values. Cytometry 75:692–698

    Article  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Gianoli E, Zuñiga-Feest A, Reyes-Diaz M, Bravo LA, Corcuera LJ (2004) Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis from the Andes of central Chile and the maritime Antarctic. Arct Antarct Alp Res 36:470–475

    Article  Google Scholar 

  • González M, Urdampilleta JD, Fasanella M, Premoli AC, Chiapella JO (2016) Distribution of rDNA and polyploidy in Descampsia antarctica E. Desv. In Antarctic and Patagonic populations. Polar Biol 39:1663–1677

    Article  Google Scholar 

  • Johnson MTJ, Husband BC, Burton TL (2003) Habitat differentiation between diploid and tetraploid Galax urceolata (Diapensiaceae). Int J Plant Sci 164:703–710

    Article  Google Scholar 

  • Klagges M, Cordero C, Cuba-Díaz M (2013) Las poblaciones de Colobanthus quitensis presentan diferenciaciones morfo-fisiológicas que podrían evidenciar la formación de ecotipo en su hábitat. In: Leppe M, Molina-Montenegro M, González M, MacDonell S, Lavín P, Oses R, Gallardo J, Rivadeneira M, Arata J, Canales R (eds) Avances en Ciencia Antártica Latinoamericana. VII Congreso Latinoamericano de Ciencia Antártica. INACH-CEAZA, Ediciones, pp 49–52

    Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploidy plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 153–176

    Chapter  Google Scholar 

  • Lewis WH (1980) Polyploidy in species populations. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 103–147

    Chapter  Google Scholar 

  • Lewis-Smith RI (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schomo RML, Van der Vies SM, Wolff WJ (eds) Antartic survey in a global contexts. Backhuys, Leiden, pp 234–239

    Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loureiro J, Rodriguez E, Santos C, Doležel J, Suda J (2008) FLOWer: a plant DNA flow cytometry database (release 1.0, May 2008). http://flower.web.ua.pt/

  • Miyashita T, Araki H, Hoshino Y (2011) Ploidy distribution and DNA content variations of Lonicera caerulea (Caprifoliaceae) in Japan. J Plant Res 124:1–9

    Article  PubMed  Google Scholar 

  • Moore DM (1970) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. II. Taxonomy, distribution and relationships. Br Antarct Surv Bull 23:63–80

    Google Scholar 

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumlating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographic area. N Phytol 159:421–430

    Article  CAS  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Reeves G, Francis D, Davies MS, Rogers HJ, Hodkinson TR (1998) Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Ann Bot 82 (Supplement A):99–105

    Article  Google Scholar 

  • Sierra-Almeida A, Casanova-Katny MA, Bravo LA, Corcuera LJ, Cavieres LA (2007) Photosynthetic responses to temperature and light of Antarctic and Andean populations of Colobanthus quitensis (Caryophyllaceae). Rev Chil Hist Nat 80:335–343

    Article  Google Scholar 

  • Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678

    Article  PubMed  PubMed Central  Google Scholar 

  • Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P (2007) Complex distribution patterns of Di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Am J Bot 94:1391–1401

    Article  PubMed  Google Scholar 

  • Sugiyama S, Yamada T (2003) Variation in nuclear DNA content in natural populations of orchard grass (Dactylis glomerata L.) in the eastern part of Hokkaido. Jpn Grassl Sci 49:129–133

    Google Scholar 

Download references

Acknowledgements

This research was funded with contributions by INACH (Chilean Antarctic Institute) INACH RG_02-13 project and by the Departamento de Ciencias y Tecnología Vegetal, Campus Los Ángeles, Universidad de Concepción. The authors wish to acknowledge the helpful suggestions made by D. Navarrete in order to achieve better accelerated growing conditions for A. thaliana. We would also like to thank International Journal Revisions (http://www.journalrevisions.com) for their English revision. Furthermore, we would like to acknowledge the reviewers for helping us to make this study a more robust work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marely Cuba-Díaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuba-Díaz, M., Cerda, G., Rivera, C. et al. Genome size comparison in Colobanthus quitensis populations show differences in species ploidy. Polar Biol 40, 1475–1480 (2017). https://doi.org/10.1007/s00300-016-2058-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-2058-z

Keywords

Navigation