Skip to main content
Log in

Heterologous expression of a novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene, ZjGRP, caused salt sensitivity in Arabidopsis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene was cloned in this study and its overexpression caused salt sensitivity in transgenic Arabidopsis.

Abstract

Glycine-rich RNA-binding proteins (GRPs) play crucial roles in diverse plant developmental processes. However, the mechanisms and functions of GRPs in salinity stress responses remain largely unknown. In this study, rapid amplification of cDNA end (RACE) PCR methods was adopted to isolate ZjGRP from Zosyia japonica, a salt-tolerant grass species. ZjGRP cDNA was 456 bp in length, corresponding to 151 amino acids. ZjGRP was localized in the nucleus and cytoplasm, and was found particularly abundantly in stomatal guard cells. Quantitative real-time PCR showed that ZjGRP was expressed in the roots, stems, and leaves of Zoysia japonica, with the greatest expression seen in the fast-growing leaves. Furthermore, expression of ZjGRP was strongly induced by treatment with NaCl, ABA, MeJA, and SA. Overexpression of ZjGRP in Arabidopsis reduced the rate of germination and retarded seedling growth. ZjGRP-overexpressing Arabidopsis thaliana exhibited weakened salinity tolerance, likely as a result of effects on ion transportation, osmosis, and antioxidation. This study indicates that ZjGRP plays an essential role in inducing salt sensitivity in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RBPs:

RNA-binding proteins

qRT-PCR:

Quantitative real-time polymerase chain reactions

ABA:

Abscisic acid

MeJA:

Methyl jasmonate

SA:

Salicylic acid

GUS:

Β-Glucuronidase

MDA:

Malonaldehyde

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

POD:

Peroxidases

APX:

Ascorbate peroxidase

References

  • Ambrosone A, Costa A, Leone A, Grillo S (2012) Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. Plant Sci 182:12–18

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Bandurska H (2000) Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injury? I. Free proline accumulation and membrane injury index in drought and osmotically stressed plants. Acta Physiologiae Plantarum 22:409–415

    Article  CAS  Google Scholar 

  • Cervera M (2005) Histochemical and fluorometric assays for uidA (GUS) gene detection. Methods Mol Biol 286:203–214

    CAS  PubMed  Google Scholar 

  • Chang Z, Liu Y, Dong H, Teng K, Han L, Zhang X (2016) Effects of cytokinin and nitrogen on drought tolerance of creeping bentgrass. PLoS One 11:e0154005

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zong J, Tan Z, Li L, Hu B, Chen C, Chen J, Liu J (2015) Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening. Plant Physiol Bioch 89:44–52

    Article  CAS  Google Scholar 

  • Demiral T, Türkan I (2006) Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ Exp Bot 56:72–79

    Article  CAS  Google Scholar 

  • Du Y, Hei Q, Liu Y, Zhang H, Xu K, Xia T (2010) Isolation and characterization of a putative vacuolar Na+/H+ antiporter gene from Zoysia japonica L. J Plant Biol 53:251–258

    Article  CAS  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelley DB, Cunningham GA, Wrona AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  CAS  PubMed  Google Scholar 

  • Fukutoku Y, Yamada Y (1981) Sources of proline-nitrogen in water-stressed soybean (Glycine max L.) I. Protein metabolism and proline accumulation. Plant Cell Physiol 22:1397–1404

    CAS  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Hidenori T, Hideki H, Shunichi K, Shinobu N, Akiko O, Akiko W, Masatsugu H, Takahiro G, Genki I, Melody M (2016) Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Res 23:171–180

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station, vol 347, 34 pp

  • Huang B, Huang B, Bonos SA (2006) Breeding and genomic approaches to improving abiotic stress tolerance in plants. Plant-Environment Interactions, 3rd edn. CRC Press, Boca Raton, pp 357–376

    Chapter  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  • Huang BR, DaCosta M, Jiang YW (2014) Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Crit Rev Plant Sci 33:141–189

    Article  CAS  Google Scholar 

  • Jia N, Liu X, Gao H (2016) A DNA2 homolog is required for DNA damage repair, cell cycle regulation, and meristem maintenance in plants. Plant Physiol 171:318–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim K, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–466

    Article  CAS  PubMed  Google Scholar 

  • Kjelgren R, Rupp L, Kilgren D (2000) Water conservation in urban landscapes. HortScience 35:1037–1040

    Google Scholar 

  • Kwak KJ, Kim H-S, Jang HY, Kang H, Ahn S-J (2016) Diverse roles of glycine-rich RNA-binding protein 7 in the response of camelina (Camelina sativa) to abiotic stress. Acta Physiologiae Plantarum 38:1–11

    Article  CAS  Google Scholar 

  • Li C, Han L-B, Zhang X (2012) Enhanced drought tolerance of tobacco overexpressing OJERF gene is associated with alteration in proline and antioxidant metabolism. J Am Soc Hortic Sci 137:107–113

    Article  CAS  Google Scholar 

  • Liu C, Li S, Wang M, Xia G (2012) A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line. Plant Mol Biol 78:159–169

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long R, Yang Q, Kang J, Zhang T, Wang H, Li M, Zhang Z (2013) Overexpression of a novel salt stress-induced glycine-rich protein gene from alfalfa causes salt and ABA sensitivity in Arabidopsis. Plant Cell Rep 32:1289–1298

    Article  CAS  PubMed  Google Scholar 

  • Long R, Wang H, Shen Y, Kang J, Zhang T, Sun Y, Zhang Y, Li M, Yang Q (2014) Molecular cloning and functional analysis of a salt-induced gene encoding an RNA-binding protein in alfalfa. Mol Breeding 34:1465–1473

    Article  CAS  Google Scholar 

  • Lorkovic ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul 19:207–218

    Article  CAS  Google Scholar 

  • Patton AJ, Reicher ZJ (2007) Zoysiagrass species and genotypes differ in their winter injury and freeze tolerance. Crop Sci 47:1619–1627

    Article  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Puyang X, An M, Han L, Zhang X (2015) Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicol Environ Saf 117:96–106

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf, B 45:131–135

    Article  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Qin Y, Li Y, Li M, Ma F (2014) Overexpression of MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh., confers salt stress tolerance and protects against oxidative stress in Arabidopsis. Plant Cell. Tissue Organ C (PCTOC) 119:635–646

    Article  CAS  Google Scholar 

  • Teng K, Chang ZH, Xiao GZ, Guo WE, Xu LX, Chao YH, Han LB (2016a) Molecular cloning and characterization of a chlorophyll degradation regulatory gene (ZjSGR) from Zoysia japonica. Genet Mol Res. doi:10.4238/gmr.15028176

    Google Scholar 

  • Teng K, Xiao GZ, Guo WE, Yuan JB, Li J, Chao YH, Han LB (2016b) Expression of an alfalfa (Medicago sativa L.) peroxidase gene in transgenic Arabidopsis thaliana enhances resistance to NaCl and H2O2. Genet Mol Res. doi:10.4238/gmr.15028002

    Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Wei S, Du Z, Gao F, Ke X, Li J, Liu J, Zhou Y (2015) Global transcriptome profiles of ‘Meyer’ Zoysiagrass in response to cold stress. PLoS One 10:e0131153

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang DH, Kwak KJ, Kim MK, Park SJ, Yang KY, Kang H (2014) Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Sci 214:106–112

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2013AA102607), Knowledge Innovation Program of Shen Zhen (No.JCYJ20160331151245672) and National Natural Science Foundation of China (No.31601989 and No.31672477).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihui Chang or Yuehui Chao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Z.-Y. Wang.

K. Teng and P. Tan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1. Analysis of the ZjGRP promoter sequence. (JPEG 895 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, K., Tan, P., Xiao, G. et al. Heterologous expression of a novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene, ZjGRP, caused salt sensitivity in Arabidopsis. Plant Cell Rep 36, 179–191 (2017). https://doi.org/10.1007/s00299-016-2068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2068-x

Keywords

Navigation