Skip to main content
Log in

Intein-mediated Cre protein assembly for transgene excision in hybrid progeny of transgenic Arabidopsis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

An approach for restoring recombination activity of complementation split-Cre was developed to excise the transgene in hybrid progeny of GM crops.

Abstract

Growing concerns about the biosafety of genetically modified (GM) crops has currently become a limited factor affecting the public acceptance. Several approaches have been developed to generate selectable-marker-gene-free GM crops. However, no strategy was reported to be broadly applicable to hybrid crops. Previous studies have demonstrated that complementation split-Cre recombinase restored recombination activity in transgenic plants. In this study, we found that split-Cre mediated by split-intein Synechocystis sp. DnaE had high recombination efficiency when Cre recombinase was split at Asp232/Asp233 (866 bp). Furthermore, we constructed two plant expression vectors, pCA-NCre-In and pCA-Ic-CCre, containing NCre866-In and Ic-CCre866 fragments, respectively. After transformation, parent lines of transgenic Arabidopsis with one single copy were generated and used for hybridization. The results of GUS staining demonstrated that the recombination activity of split-Cre could be reassembled in these hybrid progeny of transgenic plants through hybridization and the foreign genes flanked by two loxP sites were efficiently excised. Our strategy may provide an effective approach for generating the next generation of GM hybrid crops without biosafety concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen S, Songkumarn P, Liu J, Wang GL (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Ruiz ON, Dhingra A (2005) Chloroplast genetic engineering to improve agronomic traits. Methods Mol Biol 286:111–138

    CAS  PubMed  Google Scholar 

  • Darwish NA, Khan RS, Ntui VO, Nakamura I, Mii M (2014) Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system. Plant Cell Rep 33:411–421

    Article  CAS  PubMed  Google Scholar 

  • Ennifar E, Meyer JE, Buchholz F, Stewart AF, Suck D (2003) Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation. Nucleic Acids Res 31:5449–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans TC Jr, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275:9091–9094

    Article  CAS  PubMed  Google Scholar 

  • Fraiture MA, Herman P, Taverniers I, De Loose M, Deforce D, Roosens NH (2015) Current and new approaches in GMO detection: challenges and solutions. Biomed Res Int 2015:392872

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X, Zhou J, Li J, Zou X, Zhao J, Li Q, Xia R, Yang R, Wang D, Zuo Z, Tu J, Tao Y, Chen X, Xie Q, Zhu Z, Qu S (2015) Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy. Plant Physiol 167:11–24

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M (2003) The ecological risks of transgenic plants. Riv Biol 96:207–223

    PubMed  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Nat Biotechnol 11:1286–1292

    Article  CAS  Google Scholar 

  • Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B (1993) Interaction of myogenic factors and the retinoblastoma protein mediates muscle-cell commitment and differentiation. Cell 72:309–324

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Gopaul DN, van Duyne GD (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389:40–46

    Article  CAS  PubMed  Google Scholar 

  • Han XZ, Han FY, Ren XS, Si J, Li CQ, Song HY (2013) Ssp DnaE split-intein mediated split-Cre reconstitution in tobacco. Plant Cell Tissue Organ C ult 113:529–542

    Article  CAS  Google Scholar 

  • Hirrlinger J, Scheller A, Hirrlinger PG, Kellert B, Tang W, Wehr MC, Goebbels S, Reichenbach A, Sprengel R, Rossner MJ, Kirchhoff F (2009) Split-cre complementation indicates coincident activity of different genes in vivo. PLoS One 4:e4286

    Article  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MV (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69 kD subunit of the vacuolar H (+)-adenosine triphosphatase. Science 250:651–657

    Article  CAS  PubMed  Google Scholar 

  • Kellendonk C, Tronche F, Monaghan AP, Angrand PO, Stewart F, Schütz G (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res 24:1404–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempe K, Rubtsova M, Gils M (2014) Split-gene system for hybrid wheat seed production. Proc Natl Acad Sci USA 111:9097–9102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  CAS  PubMed  Google Scholar 

  • Kondrák M, van der Meer IM, Bánfalvi Z (2006) Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res 15:729–737

    Article  PubMed  Google Scholar 

  • Luo KM, Duan H, Zhao DG, Zheng XL, Deng W, Chen YQ, Stewart CN, McAvoy R, Jiang XN, Wu YH, He AG, Pei Y, Li Y (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improves efficiency of FLP or CRE recombinase transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    Article  CAS  PubMed  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  CAS  PubMed  Google Scholar 

  • Perler FB, Davis EO, Dean GE, Gimble FS, Jack WE, Neff N, Noren CJ, Thorner J, Belfort M (1994) Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res 22(7):1125–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petyuk V, McDermott J, Cook M, Sauer B (2004) Functional mapping of Cre recombinase by pentapeptide insertional mutagenesis. J Biol Chem 279:37040–37048

    Article  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Van Duyne GD (2001) A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct 30:87–104

    Article  PubMed  Google Scholar 

  • Wang P, Chen T, Sakurai K, Han BX, He Z, Feng G, Wang F (2012) Intersectional Cre driver lines generated using split-intein mediated split-Cre reconstitution. Sci Rep 2:497

    PubMed  PubMed Central  Google Scholar 

  • Wen M, Gao Y, Wang L, Ran L, Li J, Luo K (2014) Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco. PLoS One 9:e110290

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong S, Mills E, Truong K (2012) Simultaneous assembly of two target proteins using split inteins for live cell imaging. Protein Eng Des Sel 26:207–213

    Article  PubMed  Google Scholar 

  • Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 95:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu MQ, Evans TC Jr (2005) Recent advances in protein splicing: manipulating proteins in vitro and in vivo. Curr Opin Biotechnol 16:440–446

    Article  CAS  PubMed  Google Scholar 

  • Yau YY, Stewart CN Jr (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Han F, Zhang J, Birchler J, Peterson T (2012) A transgenic system for generation of transposon Ac/Ds-induced chromosome rearrangements in rice. Theor Appl Genet 125:1449–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Peng A, Xu L, Liu X, Lei T, Yao L, He Y, Chen S (2013) Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Plant Cell Rep 32:1601–1613

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31300990, 31370672 and 31171620), the National Key Project for Research on Transgenic Plants (2016ZX08010-003), the Natural Science Foundation Project of CQ CSTC (CSTC2013JJB8007) and the Fundamental Research Funds for the Central Universities (XDJK2013c147 and XDJK2014a005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keming Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Lakshmanan.

J. Ge and L. Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 219 kb)

Supplementary material 2 (JPEG 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, J., Wang, L., Yang, C. et al. Intein-mediated Cre protein assembly for transgene excision in hybrid progeny of transgenic Arabidopsis . Plant Cell Rep 35, 2045–2053 (2016). https://doi.org/10.1007/s00299-016-2015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2015-x

Keywords

Navigation