Skip to main content
Log in

Ssp DnaE split-intein mediated split-Cre reconstitution in tobacco

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The Cre/loxP system is increasingly exploited for spatial and temporal gene activation or inactivation. In this study, a novel approach for gene activation using a Cre/loxp system in tobacco is described. As the DnaE intein in Synechocystis sp. strain PCC6803 is capable of catalyzing a protein trans-splicing reaction to assemble a mature protein from two separate precursors, the N- and C-terminal ends of the Cre enzyme, split between Gly190 and Gly191, were fused to N- and C-terminals of the Ssp DnaE split intein,respectively. Subsequently, in-frame fusions of NCre/NInt and CInt/CCre are assembled into the pCAMBIA1300 cloning vector, and used for co-expression, along with the BAR selectable marker gene for BASTA herbicide resistance in tobacco. A Cre-dependent excision recombination event is monitored when tobacco leaf explants are screened for resistance to Basta, but along with absence of beta-glucuronidase activity. Based on herbicide resistance, an efficient recombination event is observed, in vivo Bar activation following co-expression of NCre/NInt and CInt/CCre fusion genes in pCAGUS/BAR transgenic lines. Moreover, the recombination efficiency is comparable to that of intact Cre gene expression. However, no Cre recombination event is observed when only the NCre and CCre genes or the NCre/NInt fusion gene and the CCre genes are co-expressed. Thus, the Ssp DnaE split intein-mediated Cre activity reconstitution observed in this study provides an alternative approach for the traditional Cre/loxP system, and this may aid in achieving dynamic regulation of gene expression in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

YEB:

Yeast extract broth

6-BA:

6-Benzyladenine

PPT:

Phosphinothricin

MES:

2-(N-Morpholino)ethanesulfonic acid

HYG:

Hygromycin

Kan:

Kanamycin

GUS:

β-Glucuronidase

MS:

Murashige and Skoog

References

  • Abremski K, Frommer B, Hoess RH (1986) Linking-number changes in the DNA substrate during Cre-mediated loxP site-specific recombination. J Mol Biol 192:17–26

    Article  PubMed  CAS  Google Scholar 

  • Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63:615–636

    Article  PubMed  CAS  Google Scholar 

  • Amitai G, Callahan BP, Stanger MJ, Belfort G, Belfort M (2009) Modulation of intein activity by its neighboring extein substrates. Proc Natl Acad Sci USA 106:11005–11010

    Article  PubMed  CAS  Google Scholar 

  • Appleby-Tagoe JH, Thiel IV, Wang Y, Wang Y, Mootz HD, Liu XQ (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 286:34440–34447

    Article  PubMed  CAS  Google Scholar 

  • Beckervordersandforth R, Tripathi P, Ninkovic J, Bayam E, Lepier A, Stempfhuber B, Kirchhoff F, Hirrlinger J, Haslinger A, Lie DC, Beckers J, Yoder B, Irmler M, Götz M (2010) In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7:744–758

    Article  PubMed  CAS  Google Scholar 

  • Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jenq T, Palys JM, Tang K, Gutterson N (2002) A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J 31:113–125

    Article  PubMed  CAS  Google Scholar 

  • Cao BH, Wei XS, Lei JJ, Xiao X, Chen QH (2012) Inducing male sterility of tomato using two component system. Plant Cell Tiss Organ Cult 111:163–172

    Article  Google Scholar 

  • Casanova E, Lemberger T, Fehsenfeld S, Mantamadiotis T, Schütz G (2003) Alpha complementation in the Cre recombinase enzyme. Genesis 37:25–29

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16(664–668):670

    Google Scholar 

  • Chen L, Pradhan S, Evans TC Jr (2001) Herbicide resistance from a divided EPSPS protein: the split Synechocystis DnaE intein as an in vivo affinity domain. Gene 263:39–48

    Article  PubMed  CAS  Google Scholar 

  • Chen YX, Liu H, Zhang WB, Jin YF (2004) A novel tri-primer PCR method (TP-PCR) for rapid construction of fpg gene. J Microbiol Methods 56:359–364

    Article  PubMed  CAS  Google Scholar 

  • Chin HG, Kim GD, Marin I, Mersha F, Evans TC Jr, Chen L, Xu MQ, Pradhan S (2003) Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc Natl Acad Sci USA 100:4510–4515

    Article  PubMed  CAS  Google Scholar 

  • Chiu MI, Katz H, Berlin V (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91:12574–12578

    Article  PubMed  CAS  Google Scholar 

  • Datla RSS, Bekkaoui F, Hammerlindl JK, Pilate G, Dunstan DI, Crosby WL (1993) Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci 94:139–149

    Article  CAS  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, Peck I, De Wilde C, Marjanac G, Nolf J, De Paepe A, Depicker A (2007) Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. Plant Physiol 145:1171–1182

    Article  PubMed  Google Scholar 

  • Delneri D, Tomlin GC, Wixon JL, Hutter A, Sefton M, Louis EJ, Oliver SG (2000) Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene 252:127–135

    Article  PubMed  CAS  Google Scholar 

  • Evans TC Jr, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275:9091–9094

    Article  PubMed  CAS  Google Scholar 

  • Gils M, Marillonnet S, Werner S, Grützner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y (2008) A novel hybrid seed system for plants. Plant Biotechnol J 6:226–235

    Article  PubMed  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BA (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Gopaul DN, van Duyne GD (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389:40–46

    Article  PubMed  CAS  Google Scholar 

  • Hirrlinger J, Requardt RP, Winkler U, Wilhelm F, Schulze C, Hirrlinger PG (2009a) Split-CreERT2: Temporal control of DNA recombination mediated by split-cre protein fragment complementation. PLoS ONE 4:e8354

    Article  PubMed  Google Scholar 

  • Hirrlinger J, Scheller A, Hirrlinger PG, Kellert B, Tang WN, Wehr MC, Goebbels S, Reichenbach A, Sprengel R, Rossner M, Kirchhoff F (2009b) Split-Cre complementation indicates coincident activity of different Genes in vivo. PLoS ONE 4:e4286

    Article  PubMed  Google Scholar 

  • Iwai H, Züger S, Jin J, Tam PH (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580:1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Jullien N, Sampieri F, Enjalbert A, Herman J-P (2003) Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res 31:e131

    Article  PubMed  Google Scholar 

  • Jullien N, Goddard I, Selmi-Ruby S, Fina JL, Cremer H, Herman JP (2007) Conditional transgenesis using dimerizable Cre (DiCre). PLoS ONE 12:e1355

    Article  Google Scholar 

  • Kempe K, Rubtsova M, Gils M (2009) Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes. Plant Biotechnol J 7:283–297

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light–mediated induction of protein interactions in living cells. Nat Methods 7:973–975

    Article  PubMed  CAS  Google Scholar 

  • Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4:340–347

    Article  PubMed  Google Scholar 

  • Kopertekh L, Jüttner G, Schiemann J (2004) PVX-Cre-mediated marker gene elimination from transgenic plants. Plant Mol Biol 55:491–500

    Article  PubMed  CAS  Google Scholar 

  • Lew BM, Mills KV, Paulus H (1998) Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem 273:15887–15890

    Article  PubMed  CAS  Google Scholar 

  • Martin DD, Xu MQ, Evans TC Jr (2001) Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40:1393–1402

    Article  PubMed  CAS  Google Scholar 

  • Maruo T, Ebihara T, Sato E, Kondo S, Okabe S (2008) Cre complementation with variable dimerizers for inducible expression in neurons. J Med Dent Sci 55:247–254

    PubMed  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ, Dudley SD, Tsao JL, Shibata D, Liskay RM (2008) Tractable Cre-lox system for stochastic alteration of genes in mice. Nat Methods 5:227–229

    Article  PubMed  CAS  Google Scholar 

  • Moniz de Sá M, Drouin G (1996) Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol 13:1198–1212

    Article  PubMed  Google Scholar 

  • Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683

    Article  PubMed  CAS  Google Scholar 

  • Odell J, Caimi P, Sauer B, Russell S (1990) Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223:369–378

    Article  PubMed  CAS  Google Scholar 

  • Petri C, López-Noguera S, Wang H, García-Almodóvar C, Alburquerque N, Burgos L (2012) A chemical-inducible Cre-LoxP system allows for elimination of selection marker genes in transgenic apricot. Plant Cell Tiss Organ Cult 110:337–346

    Article  CAS  Google Scholar 

  • Ramsden R, Arms L, Davis TN, Muller EGD (2011) An intein with genetically selectable markers provides a new approach to internally label proteins with GFP. BMC Biotechnol 11:71

    Article  PubMed  CAS  Google Scholar 

  • Roy SD, Saxena M, Bhomkar PS, Pooggin M, Hohn T, Bhalla-Sarin N (2008) Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoters. Plant Cell Tiss Organ Cult 95:1–11

    Article  CAS  Google Scholar 

  • Seidi A, Mie M, Kobatake E (2007) Novel recombination system using Cre recombinase alpha complementation. Biotechnol Lett 29:1315–1322

    Article  PubMed  CAS  Google Scholar 

  • Shiba K, Schimmel P (1992) Functional assembly of a randomly cleaved protein. Proc Natl Acad Sci USA 89:1880–1884

    Article  PubMed  CAS  Google Scholar 

  • Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341:755–757

    Article  PubMed  CAS  Google Scholar 

  • Song HY, Ren XS, Si J, Li CQ, Song M (2008) Construction of marker free GFP transgenic tobacco by Cre/lox site-specific recombination system. Agric Sci China 7:1061–1070

    Article  Google Scholar 

  • Southworth MW, Adam E, Panne D, Byer R, Kautz R, Perler FB (1998) Control of protein splicing by intein fragment reassembly. EMBO J 17:918–926

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Ghosh I, Paulus H, Xu MQ (2001) Protein trans-splicing to produce herbicide-resistant acetolactate synthase. Appl Environ Microbiol 67:1025–1029

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Chen T, Sakurai K, Han BX, He Z, Feng G, Wang F (2012) Intersectional Cre driver lines generated using split-Intein mediated split-Cre reconstitution. Sci Rep 2:497

    PubMed  Google Scholar 

  • Williams KP, Shoelson SE (1993) Cooperative self-assembly of SH2 domain fragments restores phosphopeptide binding. Biochemistry 32:11279–11284

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 95:9226–9231

    Article  PubMed  CAS  Google Scholar 

  • Xiang DQ, Venglat P, Tibiche C, Yang H, Risseeuw E, Cao YG, Babic V, Cloutier M, Keller W, Wang E, Selvaraj G, Datla R (2011) Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol 156:346–356

    Article  PubMed  CAS  Google Scholar 

  • Xu YW, Xu G, Liu BD, Gu GQ (2007) Cre reconstitution allows for DNA recombination selectively in dual-marker-expressing cells in transgenic mice. Nucleic Acids Res 35:e126

    Article  PubMed  Google Scholar 

  • Yang JJ, Fox GC Jr, Henry-Smith TV (2003) Intein-mediated assembly of a functional beta-glucuronidase in transgenic plants. Proc Natl Acad Sci USA 100:3513–3518

    Article  PubMed  CAS  Google Scholar 

  • Yang JJ, Henry-Smith TV, Qi M (2006) Functional analysis of the split Synechocystis DnaE intein in plant tissues by biolistic particle bombardment. Transgenic Res 15:583–585

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation Project of CQ CSTC (No. CSTC2011jjA80014), the National Natural Science Foundation of China (No. 30771462), and the Fundamental Research Funds for the Central Universities (No. XDJK2009B024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Han, F., Ren, X. et al. Ssp DnaE split-intein mediated split-Cre reconstitution in tobacco. Plant Cell Tiss Organ Cult 113, 529–542 (2013). https://doi.org/10.1007/s11240-013-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0294-2

Keywords

Navigation