Skip to main content

Advertisement

Log in

Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plant transformation protocols generally involve the use of selectable marker genes for the screening of transgenic material. The bacterial gene nptII, coding for a neomycin phosphotransferase, and the hpt gene, coding for a hygromycin phosphotransferase, are frequently used. These enzymes detoxify aminoglycoside antibiotics by phosphorylation, thereby permitting cell growth in the presence of antibiotics. Nevertheless, the screening for transgenic regenerated shoots is often partial and difficult due to regeneration of escapes and chimeras. These difficulties can be caused, in part, by an incorrect assumption about the mode of action of antibiotics in bacterial and eukaryotic cells and in in vitro tissue culture. The information contained in this review could be useful to establish better selection strategies by taking into account factors such as explant complexity, transformation and selection protocols that allow better accessibility to cells of Agrobacterium and antibiotics, and faster regeneration methods that avoid collateral effects of antibiotics on recovered, putative transgenic shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali BH (1995) Gentamicin nephrotoxicity in humans and animals: some recent research. Gen Pharmacol 26:1477–1487. doi:10.1016/0306-3623(95)00049-6

    Article  CAS  PubMed  Google Scholar 

  • Ballester A, Cervera M, Pena L (2008) Evaluation of selection strategies alternative to NPTII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015. doi:10.1007/s00299-008-0523-z

    Article  CAS  PubMed  Google Scholar 

  • Brummett R, Fox K (1989) Aminoglycoside-induced hearing loss in humans. Antimicrob Agents Chemother 33:797–800

    CAS  PubMed  Google Scholar 

  • Bryan LE, Van Den Elzen HM (1975) Gentamicin accumulation by sensitive strains of Escherichia coli and Pseudomonas aeruginosa. J Antibiot 28:696–703

    CAS  PubMed  Google Scholar 

  • Bryan LE, Van Den Elzen HM (1976) Streptomycin accumulation in susceptible and resistant strains of Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 9:928–938

    CAS  PubMed  Google Scholar 

  • Buchanan JH, Stevens A, Sidhu J (1987) Aminoglycoside antibiotic treatment of human fibroblasts: intracellular accumulation, molecular changes and the loss of ribosomal accuracy. Eur J Cell Biol 43:141–147

    CAS  PubMed  Google Scholar 

  • Burgos L, Alburquerque N (2003) Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Rep 21:1167–1174. doi:10.1007/s00299-003-0625-6

    Article  CAS  PubMed  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  CAS  PubMed  Google Scholar 

  • Chauvin JE, Marhadour S, Cohat J, Le Nard M (1999) Effects of gelling agents on in vitro regeneration and kanamycin efficiency as a selective agent in plant transformation procedures. Plant Cell Tissue Organ Cult 58:213–217

    Article  CAS  Google Scholar 

  • Christou P (1990) Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann Bot 66:379–386

    CAS  Google Scholar 

  • Christou P, Ford TL (1995) Recovery of chimeric rice plants from dry seed using electric discharge particle acceleration. Ann Bot 75:449–454

    Article  Google Scholar 

  • Colmer TD, Fan TWM (1994) Interactions of Ca2+ and NaCl stress on the ion relations and intracellular pH of Sorghum bicolor root tips: an in vivo 31P NMR study. J Exp Bot 45:1037–1044. doi:10.1093/jxb/45.8.1037

    Article  CAS  Google Scholar 

  • Costa MGC, Otoni WC, Moore GA (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep 21:365–373. doi:10.1007/s00299-002-0533-1

    Article  CAS  Google Scholar 

  • Crawford LM (1972) Calcium inhibition of antibacterial activity of kanamycin. Am J Vet Res 33:1685–1688

    CAS  PubMed  Google Scholar 

  • Dandekar AM (1992) Transformation. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB International, Wallingford, pp 141–168

    Google Scholar 

  • Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109–116

    Article  CAS  PubMed  Google Scholar 

  • Danilova SA, Dolgikh YI (2004) The stimulatory effect of the antibiotic cefotaxime on plant regeneration in maize tissue culture. Russ J Plant Physiol 51:559–562

    Article  CAS  Google Scholar 

  • Davies J, Gorini L, Davis BD (1965) Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol 1:93–106

    CAS  PubMed  Google Scholar 

  • Davis BD (1988) The lethal action of aminoglycosides. J Antimicrob Chemother 22:1–3

    Article  CAS  PubMed  Google Scholar 

  • Davis SD, Iannetta A (1972) Antagonistic effect of calcium in serum on activity of tobramycin against Pseudomonas. Antimicrob Agents Chemother 1:466–469

    CAS  PubMed  Google Scholar 

  • De Ropp RS (1949) The action of antibacterial substances on the growth of Phytomonas tumefaciens and of crown gall tumor tissues. Phytopathol 39:822–828

    Google Scholar 

  • De Rossi E, Ainsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30:36–52. doi:10.1111/j.1574-6976.2005.00000.x

    Article  PubMed  CAS  Google Scholar 

  • Domínguez A, Cervera M, Pérez RM, Romero J, Fagoaga C, Cubero J (2004) Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breed 14:171–183

    Article  Google Scholar 

  • Dong JZ, McHughen A (1993) Transgenic flax plants from Agrobacterium mediated transformation: incidence of chimeric regenerants and inheritance of transgenic plants. Plant Sci 91:139–148

    Article  CAS  Google Scholar 

  • Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35:800–810. doi:10.1046/j.1365-313X.2003.01849.x

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Willment J, Huggins D, Grant GH, Campbell MM (2005) Kanamycin reveals the role played by glutamate receptors in shaping plant resource allocation. Plant J 43:348–355. doi:10.1111/j.1365-313X.2005.02458.x

    Article  CAS  PubMed  Google Scholar 

  • Edelmann P, Gallant J (1977) Mistranslation in E. coli. Cell 10:130–137

    Article  Google Scholar 

  • Endress V, Barriuso J, Ruperez P, Martin JP, Blazquez A, Villalobos N, Guerra H, Martin L (2009) Differences in cell wall polysaccharide composition between embryogenic and non-embryogenic calli of Medicago arborea L. Plant Cell Tissue Organ Cult 97:323–329. doi:10.1007/s11240-009-9531-0

    Article  CAS  Google Scholar 

  • Epstein E (1961) The essential role of calcium in selective cation transport by plant cells. Plant Physiol 36:437–444

    Article  CAS  PubMed  Google Scholar 

  • Erikson O, Hertzberg M, Nasholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458. doi:10.1038/nbt946

    Article  CAS  PubMed  Google Scholar 

  • Faize M, Faize L, Burgos L (2010) Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation (submitted)

  • Flachowsky H, Riedel M, Reim S, Hanke V (2008) Evaluation of the uniformity and stability of T-DNA integration and gene expression in transgenic apple plants. Electron J Biotechnol 11:1–15. doi:10.2225/vol11-issue1-fulltext-10

    Article  CAS  Google Scholar 

  • Fourmy D, Recht MI, Blanchard SC, Puglisi JD (1996) Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274:1367–1371

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJM, Schouten PMV, Schilperoort RA, Hoge JHC (1993) A chimeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol Biol 22:907–912

    Article  CAS  PubMed  Google Scholar 

  • Gough KC, Hawes WS, Kilpatrick J, Whitelam GC (2001) Cyanobacterial GR6 glutamate-1-semialdehyde aminotransferase: a novel enzyme-based selectable marker for plant transformation. Plant Cell Rep 20:296–300

    Article  CAS  Google Scholar 

  • Grant JE, Cooper PA, Gilpin BJ, Hoglund SJ, Reader JK, Pither-Joyce MD, Timmerman-Vaughan GM (1998) Kanamycin is effective for selecting transformed peas. Plant Sci 139:159–164

    Article  CAS  Google Scholar 

  • Halaban R, Alfano FD (1984) Selective elimination of fibroblasts from cultures of normal human melanocytes. In Vitro 20:447–450

    Article  CAS  PubMed  Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol Biol 37:287–296

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW (1981a) Aminoglycoside uptake and mode of action with special reference to streptomycin and gentamicin. 1. Antagonists and mutants. J Antimicrob Chemother 8:249–276

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW (1981b) Aminoglycoside uptake and mode of action - with special reference to streptomycin and gentamicin. 2. Effects of aminoglycosides on cells. J Antimicrob Chemother 8:429–445

    Article  CAS  PubMed  Google Scholar 

  • Harvey SC, Skolnick P (1999) Polyamine-like actions of aminoglycosides at recombinant N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 291:285–291

    CAS  PubMed  Google Scholar 

  • Hauptmann RM, Vasil V, Oziasakins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602–606

    Article  CAS  PubMed  Google Scholar 

  • Haws CM, Winegar BD, Lansman JB (1996) Block of single L-type Ca2+ channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol 107:421–432

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Estrella L, Deblock M, Messens E, Hernalsteens JP, Vanmontagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995

    CAS  PubMed  Google Scholar 

  • Holford P, Newbury HJ (1992) The effects of antibiotics and their breakdown products on the in vitro growth of Antirrhinum majus. Plant Cell Rep 11:93–96

    CAS  Google Scholar 

  • Hon WC, McKay GA, Thompson PR, Sweet RM, Yang DSC, Wright GD, Berghuis AM (1997) Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89:887–895

    Article  CAS  PubMed  Google Scholar 

  • Howard M, Frizzell DM, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 2:467–469

    Article  CAS  PubMed  Google Scholar 

  • Jerinic O, Joseph S (2000) Conformational changes in the ribosome induced by translational miscoding agents. J Mol Biol 304:707–713

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Sha SH, Schacht J (2006) Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of corti in vivo. J Neurochem 99:269–276. doi:10.1111/j.1471-4159.2006.04117.x

    Article  CAS  PubMed  Google Scholar 

  • Joersbo M, Okkels FT (1996a) A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep 16:219–221

    Article  CAS  Google Scholar 

  • Joersbo M, Okkels FT (1996b) Calcium reduces toxicity of aminoglycoside antibiotics in sugar beet explants in vitro. Physiol Plant 97:245–250

    Article  CAS  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Joersbo M, Jorgensen K, Brunstedt J (2003) A selection system for transgenic plants based on galactose as selective agent and a UDP-glucose: galactose-1-phosphate uridyl-transferase gene as selective gene. Mol Breed 11:315–323

    Article  CAS  Google Scholar 

  • Jordan MC, McHughen A (1988) Transformed callus does not necessarily regenerate transformed shoots. Plant Cell Rep 7:285–287

    Article  CAS  Google Scholar 

  • Keeling KM, Brooks DA, Hopwood JJ, Li PN, Thompson JN, Bedwell DM (2001) Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of alpha-L-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Hum Mol Genet 10:291–299

    Article  CAS  PubMed  Google Scholar 

  • Kunze I, Ebneth M, Heim U, Geiger M, Sonnewald U, Herbers K (2001) 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Mol Breed 7:221–227

    Article  CAS  Google Scholar 

  • Kurtz DI (1974) Fidelity of protein-synthesis with chicken embryo mitochondrial and cytoplasmic ribosomes. Biochemistry 13:572–577

    Article  CAS  PubMed  Google Scholar 

  • LaFayette PR, Kane PM, Phan BH, Parrott WA (2005) Arabitol dehydrogenase as a selectable marker for rice. Plant Cell Rep 24:596–602. doi:10.1007/s00299-005-0015-3

    Article  CAS  PubMed  Google Scholar 

  • Laine E, Lamblin F, Lacoux J, Dupre P, Roger D, Sihachakr D, David A (2000) Gelling agent influences the detrimental effect of kanamycin on adventitious budding in flax. Plant Cell Tissue Organ Cult 63:77–80

    Article  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    CAS  PubMed  Google Scholar 

  • Li M, Huang ZG, Han LX, Zhao GR, Li YH (2003) Gene transfer strategy for kiwifruit to obtain pure transgenic plant through inducing adventitious roots in leaf explants with Agrobacterium tumefaciens. Proceedings of the fifth international symposium on Kiwifruit, Acta Horticult 610:495–499

    Google Scholar 

  • Lin JJ, Assad-Garcia N, Kuo J (1995) Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Sci 109:171–177

    Article  CAS  Google Scholar 

  • Machado MLD, Machado AD, Hanzer V, Weiss H, Regner F, Steinkellner H, Mattanovich D, Plail R, Knapp E, Kalthoff B, Katinger H (1992) Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of plum pox virus. Plant Cell Rep 11:25–29

    CAS  Google Scholar 

  • Maldonado-Perez D, Shah A, Stirling T, Ward D, Riccardi D (2006) The attenuation of aminoglycoside-induced renal callular toxicity by lithium and by calcium-sensing receptor antagonism. Experimental biology 2006 meeting, FASEB J 20:A341

  • Masuko T, Kuno T, Kashiwagi K, Kusama T, Williams K, Igarashi K (1999) Stimulatory and inhibitory properties of aminoglycoside antibiotics at N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 290:1026–1033

    CAS  PubMed  Google Scholar 

  • Mathews H, Wagoner W, Kellogg J, Bestwick RK (1995) Genetic transformation of strawberry: stable integration of a gene to control biosynthesis of ethylene. In Vitro Cell Dev Biol Plant 31:36–43

    Article  CAS  Google Scholar 

  • Mathias RJ, Boyd LA (1986) Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L. em Thell). Plant Sci 46:217–223

    Article  CAS  Google Scholar 

  • Mathias RJ, Mukasa C (1987) The effect of cefotaxime on the growth and regeneration of callus from 4 varieties of barley (Hordeum vulgare L.). Plant Cell Rep 6:454–457

    CAS  Google Scholar 

  • McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety ‘Maryland Mammoth’ for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6:914–929. doi:10.1111/j.1467-7652.2008.00365.x

    Article  CAS  PubMed  Google Scholar 

  • Mead FC, Williams AJ (2004) Electrostatic mechanisms underlie neomycin block of the cardiac ryanodine receptor channel (RyR2). Biophys J 87:3814–3825. doi:10.1529/biophysj.104.049338

    Article  CAS  PubMed  Google Scholar 

  • Mentewab A, Stewart CN (2005) Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23:1177–1180. doi:10.1038/nbt1134

    Article  CAS  PubMed  Google Scholar 

  • Miguel CM, Oliveira MM (1992) Transgenic almond (Prunus dulcis Mill.) plants obtained by Agrobacterium-mediated transformation of leaf explants. Plant Cell Rep 18:387–393

    Article  Google Scholar 

  • Mihaljevic S, Peric M, Jelaska S (2001) The sensitivity of embryogenic tissue of Picea omorika (Panc.) Purk. to antibiotics. Plant Cell Tissue Organ Cult 67:287–293

    Article  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232. doi:10.1016/j.jbiotec.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  • Mingeot-Leclercq MP, Tulkens PM (1999) Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 43:1003–1012

    CAS  PubMed  Google Scholar 

  • Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–394

    Article  CAS  PubMed  Google Scholar 

  • Morris JC, Mensa-Wilmot K (1997) Role of 2, 6-dideoxy-2, 6-diaminoglucose in activation of a eukaryotic phospholipase C by aminoglycoside antibiotics. J Biol Chem 272:29554–29559

    Article  CAS  PubMed  Google Scholar 

  • Noller HF (1991) Ribosomal-RNA and translation. Annu Rev Biochem 60:191–227

    Article  CAS  PubMed  Google Scholar 

  • Nomura K, Naruse K, Watanabe K, Sokabe M (1990) Aminoglycoside blockade of Ca2+-activated K+ channel from rat-brain synaptosomal membranes incorporated into planar bilayers. J Membr Biol 115:241–251

    Article  CAS  PubMed  Google Scholar 

  • Notenboom S, Wouterse AC, Peters B, Kuik LH, Heemskerk S, Russel FGM, Masereeuw R (2006) Increased apical insertion of the multidrug resistance protein 2 (MRP2/ABCC2) in renal proximal tubules following gentamicin exposure. J Pharmacol Exp Ther 318:1194–1202. doi:10.1124/jpet.106.104547

    Article  CAS  PubMed  Google Scholar 

  • Oreifig AS, Kovacs G, Jenes B, Kiss E, Scott P, Toldi O (2004) Development of a non-lethal selection system by using the aadA marker gene for efficient recovery of transgenic rice (Oryza sativa L.). Plant Cell Rep 22:490–496. doi:10.1007/s00299-003-0715-5

    Article  CAS  PubMed  Google Scholar 

  • Owens LD (1979) Kanamycin promotes morphogenesis of plant tissues. Plant Sci Lett 16:225–230

    Article  CAS  Google Scholar 

  • Ozaki S, DeWald DB, Shope JC, Chen J, Prestwich GD (2000) Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. Proc Natl Acad Sci USA 97:11286–11291

    Google Scholar 

  • Padilla IMG, Webb K, Scorza R (2003) Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.). Plant Cell Rep 22:38–45. doi:10.1007/s00299-003-0648-z

    Article  CAS  Google Scholar 

  • Parsons TD, Obaid AL, Salzberg BM (1992) Aminoglycoside antibiotics block voltage-dependent calcium channels in intact vertebrate nerve terminals. J Gen Physiol 99:491–504

    Article  CAS  PubMed  Google Scholar 

  • Perez-Barranco G, Torreblanca R, Padilla IMG, Sanchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tissue Organ Cult 97:243–251. doi:10.1007/s11240-009-9520-3

    Article  CAS  Google Scholar 

  • Perl A, Galili S, Shaul O, Bentzvi I, Galili G (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase-2 novel selectable markers for plant transformation. Bio-Technology 11:715–718

    CAS  Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26. doi:10.1007/s11248-004-2770-2

    Article  CAS  PubMed  Google Scholar 

  • Petri C, Alburquerque N, Burgos L (2005) The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptII-transformed leaf tissues. Plant Cell Tissue Organ Cult 80:271–276

    Article  CAS  Google Scholar 

  • Pichler M, Wang ZY, GrabnerWeiss C, Reimer D, Hering S, Grabner M, Glossmann H, Striessnig J (1996) Block of P/Q-type calcium channels by therapeutic concentrations of aminoglycoside antibiotics. Biochemistry 35:14659–14664

    Article  CAS  PubMed  Google Scholar 

  • Polowick PL, Quandt J, Mahon JD (2000) The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. Plant Sci 153:161–170

    Article  CAS  PubMed  Google Scholar 

  • Raisinghani M, Premkumar LS (2005) Block of native and cloned vanilloid receptor 1 (TRPV1) by aminoglycoside antibiotics. Pain 113:123–133. doi:10.1016/j.pain.2004.09.042

    Article  CAS  PubMed  Google Scholar 

  • Rakosy-Tican E, Aurori CM, Dijkstra C, Thieme R, Aurori A, Davey MR (2007) The usefulness of the gfp reporter gene for monitoring Agrobacterium-mediated transformation of potato dihaploid and tetraploid genotypes. Plant Cell Rep 26:661–671. doi:10.1007/s00299-006-0273-8

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SA, Kaiser BN, Franks T, Collins G, Sedgley M (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25:821–828. doi:10.1007/s00299-006-0139-0

    Article  CAS  PubMed  Google Scholar 

  • Ranjan A, Pothayee N, Seleem MN, Tyler RD Jr, Brenseke B, Sriranganathan N, Riffle J, Kasimanickam R (2009) Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella model. Int J Nanomed 4:289–297

    Article  CAS  Google Scholar 

  • Rohini VK, Rao KS (2000) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49

    Article  CAS  Google Scholar 

  • Rosellini D, LaFayette PR, Barone P, Veronesi F, Parrott WA (2004) Kanamycin-resistant alfalfa has a point mutation in the 16S plastid rRNA. Plant Cell Rep 22:774–779. doi:10.1007/s00299-004-0757-3

    Article  CAS  PubMed  Google Scholar 

  • Rosellini D, Capomaccio S, Ferradini N, Sardaro MLS, Nicolia A, Veronesi F (2007) Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant Cell Rep 26:1035–1044. doi:10.1007/s00299-007-0321-z

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Bhattacharya J, Mukherjee A, Ghosh AK, Santra CR, Dasgupta AK, Karmakar P (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2:614–622

    Article  CAS  Google Scholar 

  • Schmitt F, Oakeley EJ, Jost JP (1997) Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem 272:1534–1540

    Article  CAS  PubMed  Google Scholar 

  • Schmϋlling T, Schell J (1993) Transgenic tobacco plants regenerated from leaf disks can be periclinal chimeras. Plant Mol Biol 21:705–708

    Article  Google Scholar 

  • Scholz-Starke J, Carpaneto A, Gambale F (2006) On the interaction of neomycin with the slow vacuolar channel of Arabidopsis thaliana. J Gen Physiol 127:329–340. doi:10.1085/jpg.200509402

    Article  CAS  PubMed  Google Scholar 

  • Scott A, Woodfield D, White DWR (1998) Allelic composition and genetic background effects on transgene expression and inheritance in white clover. Mol Breed 4:479–490

    Article  CAS  Google Scholar 

  • Shi LJ, Liu LA, Cheng XH, Wang CA (2002) Decrease in acetylcholine-induced current by neomycin in PC12 cells. Arch Biochem Biophys 403:35–40

    Article  CAS  PubMed  Google Scholar 

  • Silhavy D, Maliga P (1998) Plastid promoter utilization in a rice embryogenic cell culture. Curr Genet 34:67–70

    Article  CAS  PubMed  Google Scholar 

  • Spahn CMT, Prescott CD (1996) Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74:423–439

    Article  CAS  PubMed  Google Scholar 

  • Stacey DJ, McLean WG (2000) Cytoskeletal protein mRNA expression in the chick utricle after treatment in vitro with aminoglycoside antibiotics: effects of insulin, iron chelators and cyclic nucleotides. Brain Res 871:319–332

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA, Fukai S (2003) Effect of aminoglycoside antibiotics on in vitro morphogenesis from cultured cells of chrysanthemum and tobacco. J Plant Biol 46:71–82

    Article  CAS  Google Scholar 

  • Tiboni O, Chinali G (1997) Inhibition of chloroplast protein synthesis by kirromycin: action of the antibiotic on elongation factor Tu. Plant Physiol Biochem 35:23–29

    CAS  Google Scholar 

  • Todd JH, Sens DA, Hazenmartin DJ, Bylander JE, Smyth BJ, Sens MA (1992) Aminoglycoside antibiotics alter the electrogenic transport properties of cultured human proximal tubule cells. Toxicol Pathol 20:608–616

    Article  CAS  PubMed  Google Scholar 

  • Walter F, Vicens Q, Westhof E (1999) Aminoglycoside–RNA interactions. Curr Opin Chem Biol 3:694–704

    Article  CAS  PubMed  Google Scholar 

  • Weeks JT, Koshiyama KY, Maier-Greiner U, Schaeffner T, Anderson OD (2000) Wheat transformation using cyanamide as a new selective agent. Crop Sci 40:1749–1754

    Article  CAS  Google Scholar 

  • Weide R, Koornneef M, Zabel P (1989) A simple, nondestructive spraying assay for the detection of an active kanamycin resistance gene in transgenic tomato plants. Theor Appl Genet 78:169–172

    Article  Google Scholar 

  • Wilhem JM, Pettitt SE, Jessop JJ (1978) Aminoglycoside antibiotics and eukaryotic protein synthesis: Structure–function relationships in stimulation of misreading with a wheat embryo system. Biochemistry 17:1143–1149

    Article  Google Scholar 

  • Winegar BD, Haws CM, Lansman JB (1996) Subconductance block of single mechanosensitive ion channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol 107:433–443

    Article  CAS  PubMed  Google Scholar 

  • Wright GD, Berghuis AM, Mobashery S (1998) Aminoglycoside antibiotics—structures, functions, and resistance. In: Rosen BP, Mobashery S (eds) Resolving the antibiotic paradox. Kluwer Academic and Plenum Publishers, New York, pp 27–69

    Google Scholar 

  • Yao JL, Cohen D, Atkinson R, Richardson K, Morris B (1995) Regeneration of transgenic plants from the commercial apple cultivar ‘Royal Gala’. Plant Cell Rep 14:407–412

    Article  CAS  Google Scholar 

  • Yaronskaya EB, Gritskevich ER, Trukhanovets NL, Averina NG (2007) Effect of kinetin on early stages of chlorophyll biosynthesis in streptomycin-treated barley seedlings. Russ J Plant Physiol 54:388–395. doi:10.1134/S1021443707030144

    Article  CAS  Google Scholar 

  • Yeh KC, To KY, Sun SW, Wu MC, Lin TY, Chen CC (1994) Point mutations in the chloroplast 16S ribosomal-RNA gene confer streptomycin resistance in Nicotiana plumbaginifolia. Curr Genet 26:132–135

    Article  CAS  PubMed  Google Scholar 

  • Yeiser AJ, Cox JR, Wright SN (2004) Voltage-dependent inhibition of rat skeletal muscle sodium channels by aminoglycoside antibiotics. Pflugers Archiv Eur J Physiol 448:204–213. doi:10.1007/s00424-004-1244-y

    Article  CAS  Google Scholar 

  • Yepes LM, Aldwinckle HS (1994) Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tissue Organ Cult 37:257–269

    CAS  Google Scholar 

  • Youssef SS, Moghaieb REA, Saker MM, El Awady M, El Sharkawy A (2007) Transformation of faba bean (Vicia faba L.): a non-tissue culture based approach for generating transgenic plants. In Vitro Cell Dev Biol Animal 43: S28

  • Zhang BH, Liu F, Liu ZH, Wang HM, Yao CB (2001) Effects of kanamycin on tissue culture and somatic embryogenesis in cotton. Plant Growth Regul 33:137–149

    Article  Google Scholar 

  • Zilkah S, Gressel J (1977) Cell-cultures vs whole plants for measuring phytotoxicity. 3. Correlations between phyto-toxicities in cell-suspension cultures, calli and seedlings. Plant Cell Physiol 18:815–820

    CAS  Google Scholar 

  • Zilkah S, Bocion PF, Gressel J (1977) Cell cultures vs whole plants for measuring phytotoxicity.2. Correlations between phytotoxicity in seedlings and calli. Plant Cell Physiol 18:657–670

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by BIOCARM BIO-AGR07/04-0011 and Séneca 08665/PI/08. IMGP thanks the Spanish Council of Scientific Research (CSIC) for a I3P post-doctoral contract. The authors thank Prof. Fernando Pliego-Alfaro for the critical review of the manuscript and Dr. David J. Walker for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. G. Padilla.

Additional information

Communicated by R. Reski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, I.M.G., Burgos, L. Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29, 1203–1213 (2010). https://doi.org/10.1007/s00299-010-0900-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0900-2

Keywords

Navigation