Skip to main content
Log in

Genetic transformation of strawberry: Stable integration of a gene to control biosynthesis of ethylene

  • Genetic Transformation/Somatic Cell Genetics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Efficient methods ofAgrobacterium-mediated transformation are described for two Pacific Northwest cultivars of strawberry (Fragaria ×ananassa), Tristar and Totem. We report stable incorporation of a gene for control of ethylene biosynthesis, into strawberry (cultivar Totem) for the first time. Cultivar Tristar was transformed with disarmed strains ofAgrobacterium tumefaciens (A. tumefaciens), LBA4404 or EHA101, containing a binary vector with marker genesuidA andnptII. Cultivar Totem was transformed withA. tumefaciens strains EHA101 or EHA105 harboring binary vectors with selectable marker genesnptII orhpt and with a gene for S-adenosylmethionine hydrolase (SAMase) for control of ethylene biosynthesis. The frequency of transgenic shoots ranged from 12.5% to 58.8% of the original treated explants when using plasmids containing the gene encoding SAMase. Primary shoot regenerants obtained on selection medium were subjected to several iterations of tissue isolation and reculture on higher stringency selection medium for recovering uniformly transformed plantlets. Transgenic plants were confirmed by their ability to undergo rooting on medium with selection at 60 mg/liter kanamycin or 10 mg/liter hygromycin. About 95–100% of the transformation events from different experiments were capable of profuse rooting in the presence of selection. Insertion of the SAMase gene and its integration into the strawberry genome were confirmed by Southern hybridization. About 500 plants from 250 independent transgenic events have been successfully transferred to soil for further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G.; Watson, B. D.; Stachel, S., et al. New cloning vehicles for transformation of higher plants. EMBO J. 4:277–284; 1985.

    PubMed  CAS  Google Scholar 

  • Basiouny, F. M. Ethylene evolution in strawberry (Fragaria × ananassa Duch) during fruit development. Acta Hortic. 265:363–367; 1989.

    Google Scholar 

  • Becker, D.; Kemper, E.; Schell, J., et al. New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol. Biol. 20:1195–1197; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Berthomieu, P.; Beclin, C.; Charlot, F., et al. Routine transformation of rapid cycling cabbage (Brassica oleracea)—molecular evidence for regeneration of chimeras. Plant. Sci. 96:223–235; 1994.

    Article  CAS  Google Scholar 

  • Ceponis, M. J.; Butterfield, J. E. The nature and extent of retail and consumer losses in apples, oranges, lettuce, peaches, strawberries, and potatoes marketed in greater New York. USDA Mktg. Res. Rpt. 996; 1973.

  • Cordes, S.; Deikman, J.; Margossian, L. J., et al. Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato. Plant Cell 1:1025–1034; 1989.

    Article  PubMed  CAS  Google Scholar 

  • De la Plaza, J. L.; Merodio, C. Effect of ethylene chemisorption on refrigerated strawberry fruit. Acta Hortic. 265:427–433; 1989.

    Google Scholar 

  • Dong, J. Z.; McHughen, A. Transgenic flax plants fromAgrobacterium mediated transformation: incidence of chimeric regenerants and inheritance of transgenic plants. Plant Sci. 91:139–148; 1993.

    Article  CAS  Google Scholar 

  • Dong, J. Z.; Yang, M. Z.; Jia, S. R., et al. Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35s promoter in transgenic melon plants. Bio-Technology 9:858–863; 1991.

    CAS  Google Scholar 

  • Doyle, J. J. Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12:13–15; 1990.

    Google Scholar 

  • El-Kazzaz, M. K.; Sommer, N. F.; Fortlage, R. J. Effect of different atmospheres on postharvest decay and quality of fresh strawberries. Phytopathology 73:282–285; 1983.

    Article  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirement of suspension cultures of soybean root cultures. Exp. Cell. Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel, D. J.; Nester, E. W.Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144:732–743; 1980.

    PubMed  CAS  Google Scholar 

  • Good, X.; Kellogg, J. A.; Wagoner, W. J., et al. Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol. Biol. 26:781–790; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, J. A.; Brown, L. R.; Ferro, A. J. Nucleotide sequence analysis of the coliphage T3 S-adenosylmethionine hydrolase gene and its surrounding ribonuclease III processing sites. Nucleic Acids Res. 15:717; 1987a.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, J. A.; Brown, L. R.; Ferro, A. J. Expression of the cloned coliphage T3 S-adenosylmethionine hydrolase gene inhibits DNA methylation and polyamine biosynthesis in E. coli. J. Bacteriol. 169:3625; 1987b.

    PubMed  CAS  Google Scholar 

  • Irish, V. F. Cell lineage in plant development. Curr. Opin. Genet. Dev. 1:169–173; 1991.

    Article  PubMed  CAS  Google Scholar 

  • James, D. J.; Passey, A.; Barbara, D. J. Agrobacterium-mediated transformation of the cultivated strawberry (Fragaria × Ananassa Duch.) using disarmed binary vectors. Plant Sci. 69:79–94; 1990.

    Article  CAS  Google Scholar 

  • Jefferson, R. A. Assaying chimeric genes in plants. Plant Mol. Biol. 5:387–405; 1987.

    CAS  Google Scholar 

  • Jelenkovic, G.; Chin, C. K.; Billings, S. Transformation studies ofFragaria × Ananassa Duch. by Ti plasmid ofAgrobacterium tumefaciens. Hortscience 21:695; 1986.

    Google Scholar 

  • Kader, A. A. Quality and its maintenance in relation to the postharvest physiology of strawberry. In: Dale, A.; Luby, J. J., eds. The strawberry into the 21st century. Portland, OR: Timber Press; 1991:145–152.

    Google Scholar 

  • Manning, K. Soft fruit. In: Seymour G. B.; Taylor, J. E.; Tucker, G. A., eds. Biochemistry of fruit ripening. New York: Chapman and Hall; 1993:347–378.

    Google Scholar 

  • Mathews, H.; Litz, R. E.; Wilde, H. D., et al. Stable integration and expression of beta-glucuronidase and NPTII genes in mango somatic embryos. In Vitro Cell. Dev. Biol. 28P:172–178; 1992.

    CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Nehra, N. S.; Chibbar, R. N.; Kartha, K. K., et al. Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rep. 9:293–298; 1990a.

    CAS  Google Scholar 

  • Nehra, N. S.; Chibbar, R. N.; Kartha, K. K., et al. Agrobacterium-mediated transformation of strawberry calli and recovery of transgenic plants. Plant Cell Rep. 9:10–13; 1990b.

    CAS  Google Scholar 

  • Nehra, N. S.; Kartha, K. K.; Stushnoff, C. Plant biotechnology and strawberry improvement. Adv. Strawberry Res. 11:1–11; 1992.

    Google Scholar 

  • Nogata, Y.; Ohta, H.; Voragen, A. G. J. Polygalacturonase in strawberry fruit. Phytochemistry 34:617–620; 1993.

    Article  CAS  Google Scholar 

  • Nyman, M.; Wallin, A. Transient gene expression in strawberry (Fragaria × ananassa Duch.) protoplasts and the recovery of transgenic plants. Plant Cell Rep. 11:105–108; 1992.

    Article  Google Scholar 

  • Oono, Y.; Suzuki, T.; Toki, S., et al. Effects of the over-expression of the rolC gene on leaf development in transgenic periclinal chimeric plants. Plant Cell Physiol. 34:745–752; 1993.

    CAS  Google Scholar 

  • Poethig, S. Genetic mosaics and cell lineage analysis in plants. Trends Genet. 5:273–277; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Schmulling, T.; Schell, J. Transgenic tobacco plants regenerated from leaf disks can be periclinal chimeras. Plant Mol. Biol. 21:705–708; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Sjulin, T. M.; Dale, A. Gametic diversity of North American strawberry cultivars. J. Am. Soc. Hortic. Sci. 112:375–385; 1987.

    Google Scholar 

  • Stewart, R. N. Ontogeny of the primary body in chimeral forms of higher plants. In: Subtenly, S.; Sussex, I. M., eds. The clonal basis of development. New York: Academic Press; 1978:131–160.

    Google Scholar 

  • Studier, F. W.; Movva, N. R. SAMase gene of bacteriophage T3 is responsible for overcoming host restriction. J. Virol. 19:136; 1976.

    PubMed  CAS  Google Scholar 

  • Uratsu, S. L.; Ahmadi, H.; Bringhurst, R. S., et al. Relative virulence ofAgrobacterium strains on strawberry. Hortscience 26:196–199; 1991.

    Google Scholar 

  • Wolyn, D. J.; Jelenkovic, G. Nucleotide sequence of an alcohol dehydrogenase gene in octoploid strawberry (Fragaria × ananassa Duch.). Plant Mol. Biol. 14:855–857; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Wright, W. R.; Billeter, B. A. Marketing losses of selected fruits and vegetables at wholesale, retail and consumer levels in the Chicago area. USDA Mktg. Res. Rpt. 1017; 1975.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathews, H., Wagoner, W., Kellogg, J. et al. Genetic transformation of strawberry: Stable integration of a gene to control biosynthesis of ethylene. In Vitro Cell Dev Biol - Plant 31, 36–43 (1995). https://doi.org/10.1007/BF02632224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632224

Key words

Navigation