Skip to main content
Log in

Throwing a spanner in the works: antibiotics and the translation apparatus

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The protein synthetic machinery is essential to all living cells and is one of the major targets for antibiotics. Knowledge of the structure and function of the ribosome and its associated factors is key to understanding the mechanism of drug action. Conversely, drugs have been used as tools to probe the translation cycle, thus providing a means to further our understanding of the steps that lead to protein synthesis. Our current understanding as to how antibiotics disrupt this process is reviewed here, with particular emphasis on the prokaryotic elongation cycle and those drugs that interact with ribosomal RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EF :

Elongation factor

IF :

Initiation factor

RF :

Termination/release factor

MLS B :

Macrolide, lincomycin, and streptogramin B antibiotics

References

  1. Gräfe U (1992) Biochemie der Antibiotika: Struktur-Biosyn-these-Wirkmechanismus. Spektrum, Heidelberg Berlin New York

    Google Scholar 

  2. Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1981) The molecular basis of antibiotic action. Wiley, London

    Google Scholar 

  3. Nierhaus KH, Brimacombe R, Wittmann HG (1988) Inhibition of protein biosynthesis by antibiotics. In: Jackson GG, Schlumberger HD, Zeiler HJ (eds) Perspectives in antiinfective therapy. Vieweg, Braunschweig Wiesbaden

    Google Scholar 

  4. Wittmann HG (1986) Structure of ribosomes. In: Hardesty B, Kramer G (eds) Structure, function, and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 1–27

    Google Scholar 

  5. Noller HF (1991) Ribosomal RNA and translation. Annu Rev Biochem 60:191–227

    Google Scholar 

  6. Wittmann-Liebold B, Köpke AKE, Arndt E, Krömer W, Hatakeyama T, Wittmann HG (1990) Sequence comparison and evolution of ribosomal proteins and their genes. In: Hill WE, Dahlberg A, Garrett RA, Moore PM, Schlessinger D, Warner JR (eds) The ribosome. Structure function and evolution. American Society for Microbiology, Washington, pp 598–616

    Google Scholar 

  7. Gutell RR (1994) Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res 22:3502–3507

    Google Scholar 

  8. Gutell RR, Gray MW, Schnare MN (1993) A compilation of large subunit (23S- and 23S-like) ribosomal RNA structures. Nucleic Acids Res 21:3055–3074

    Google Scholar 

  9. Brimacombe R, Amadja J, Stiege W, Schüler D (1988) A detailed model for the three-dimensional structure of E. coli 16S ribosomal RNA in situ in the 30S subunit. J Mol Biol 199:115–136

    Google Scholar 

  10. Stern S, Weiser B, Noller HF (1988) Model for the three-dimensional folding of 16S ribosomal RNA. J Mol Biol 204: 447–481

    Google Scholar 

  11. Brimacombe R (1995) The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem 230:365–383

    Google Scholar 

  12. Mitchell P, Osswald M, Schüler D, Brimacombe R (1990) Selective isolation and detailed analysis of intra-RNA crosslinks induced in the large ribosomal subunit of Escherichia coli: a model for the tertiary structure of the tRNA binding domain in 23S RNA. Nucleic Acids Res 18:4325–4333

    Google Scholar 

  13. Ramakrishnan V, Gerchman SE, Golden BL, Hoffmann DW, Kycia JH, Porter SJ, White SW (1993) Structural studies on prokaryotic ribosomal proteins. In: Nierhaus KH, Franceschi F, Subramanian AR, Erdmann V, Wittmann-Liebold B (eds) The translational apparatus: structure, function, regulation, evolution. Plenum, New York, pp 533–544

    Google Scholar 

  14. Frank J, Zhu J, Penczek P, Li Y, Srivastava S, Verschoor A, Rademacher M, Grassucci R, Lata RK, Agrawal RK (1995) A model of protein synthesis based on cyro-electron microscopy of E. coli ribosomes. Nature 376:441–444

    Google Scholar 

  15. Stark H, Mueller F, Orlova EV, Schatz M, Dube P, Erdemir T, Zemlin F, Brimacombe R, van Heel M (1995) The 70 S Escherichia coli ribosome at 23 Å resolution: fitting the ribosomal RNA. Structure 3:815–821

    Google Scholar 

  16. Svergun DI, Pedersen JS, Serdyuk IN, Koch MH (1994) Solution scattering from 50S ribosomal subunit resolves inconsistency between electron microscopic models. Proc Natl Acad Sci USA 91:11826–11830

    Google Scholar 

  17. Capel MS, Engelman DM, Freeborn BR, Kjeldgaard M, Langer JA, Ramakrishnan V, Schindler DG, Schneider DK, Schoenborn BP, Sillers IY, Yabuki S, Moore PB (1987) A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238:1403–1406

    Google Scholar 

  18. May RP, Nowotny V, Nowotny P, Voss H, Nierhaus KH (1991) Inter-protein distances within the large subunit from Escherichia coli ribosomes. EMBO J 11:373–378

    Google Scholar 

  19. Walleczek J, Schüler D, Stöffler-Meilicke M, Brimacombe R, Stöffler G (1988) A model for the spatial arrangement of the proteins in the large subunit of Escherichia coli ribosome. EMBO J 7:3571–3576

    Google Scholar 

  20. Yonath A (1992) Approaching atomic resolution in crystallography of ribosomes. Ann Rev Biophys Biomol Struc 21:77–93

    Google Scholar 

  21. Gualerzi CO, La Teana A, Spurio R, Canonaco MA, Severini M, Pon CL (1990) Initiation of protein biosynthesis in procaryotes: recognition of mRNA by ribosomes and molecular basis for the function of initiation factors. In: Hill WE, Dahlberg A, Garrett RA, Moore PM, Schlessinger D, Warner JR (eds) The ribosome. Structure function and evolution. American Society for Microbiology, Washington, pp 281–291

    Google Scholar 

  22. Tate WP, Brown CM (1992) Translational termination: “stop” for protein synthesis or “pause” for regulation of gene expression. Biochemistry 31:2443–2450

    Google Scholar 

  23. Rheinberger HJ, Sternbach H, Nierhaus KH (1981) Three tRNA binding sites on E. coli ribosomes. Proc Natl Acad Sci USA 76:5310–5314

    Google Scholar 

  24. Nierhaus KH (1993) Solution of the ribosomal riddle: how the ribosome selects the correct aminoacyl-tRNA out of 41 similar contestants. Mol Microbiol 9:661–669

    Google Scholar 

  25. Moazed D, Noller HF (1986) Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47:985–994

    Google Scholar 

  26. Moazed D, Noller HF (1989) Interaction of tRNA with 23S rRNA in the ribosomal A, P and E sites. Cell 57:585–597

    Google Scholar 

  27. Moazed D, Noller HF (1989) Intermediate states in the movement of tRNA in the ribosome. Nature 342:142–148

    Google Scholar 

  28. Dabrowski M, Spahn CMT, Nierhaus KH (1995) Interaction of tRNAs with the ribosome at the A and P sites. EMBO J:14:4872–4882

    Google Scholar 

  29. Nierhaus KH, Beyer D, Dabrowski M, Schäfer MA, Spahn CMT, Wadzack J, Bittner JU, Burkhardt N, Diedrich G, Jünemann R, Kamp D, Voss H, Stuhrmann HB 1996 The elongating ribosome; Structural an functional aspects. Biochem Cell Biol (in press)

  30. Hardesty B, Odom OW, Deng H-Y (1986) The movement of tRNA through ribosomes during peptide elongation: the displacement reaction model. In: Hardesty B, Kramer G (eds) Structure, function and, genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 495–508

    Google Scholar 

  31. Nierhaus KH (1996) An elongation factor turn-on. Nature 379:491–492

    Google Scholar 

  32. Hausner TP, Geigenmüller U, Nierhaus KH (1988) The allosteric three-site model for the elongation cycle: new insight into the inhibition mechanisms of aminoglycosides, thiostrepton, and viomycin. J Biol Chem 263:13103–13111

    Google Scholar 

  33. Schilling-Bartetzko S, Bartetzko A, Nierhaus KH (1992) Kinetic and thermodynamic parameters for tRNA binding to the ribosome and for the translocation reaction. J Biol Chem 267:4703–4712

    Google Scholar 

  34. Mesters JR, Potapov AP, de Graaf JM, Kraal B (1994) Synergism between the GTPase activities of EF-Tu·GTP and EFG·GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations. J Mol Biol 242:644–654

    Google Scholar 

  35. Czworkowski J, Wang J, Steitz TA, Moore PB (1994) The crystal structure of elongation factor G complexed with GDP, at 2.7 Å resolution. EMBO J 13:3661–3668

    Google Scholar 

  36. Ævarsson A, Brazhnikov E, Garber M, Zheltonosova, Chirgadze Yu, Al-Karadaghi S, Svensson LA, Liljas A (1994) Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J 13:3669–3677

    Google Scholar 

  37. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshtnikova L, Clark BFC, Nyborg J (1995) Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog. Science 270:1464–1472

    Google Scholar 

  38. Geigenmüller U, Nierhaus KH (1990) Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J 9:4527–4533

    Google Scholar 

  39. Schroeder R (1994) Translation. dissecting RNA function. Nature 370:597–598

    Google Scholar 

  40. Cundliffe E (1990) Recognition Sites for Antibiotics in rRNA. In: Hill WE, Dahlberg A, Garrett RA, Moore PM, Schlessinger D, Warner JR (eds) The Ribosome. Structure Function and Evolution. American Society for Microbiology, Washington, pp 479–490

    Google Scholar 

  41. Wool IG, Glück A, Endo Y (1992) Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci 17:266–269

    Google Scholar 

  42. Purohit P, Stern S (1994) Interaction of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 370:659–662

    Google Scholar 

  43. Potapov AP, Triana-Alonso FJ, Nierhaus KH (1995) Ribosomal decoding processes at codons in the A or P sites depend differently on 2′OH groups. J Mol Biol 270:17680–17684

    Google Scholar 

  44. Howard B, Thom G, Jeffrey I, Colthurst D, Knowles D, Prescott C 1995 Fragmentation of the ribosome to investigate RNA-ligand interactions. Biochem Cell Biol (in press)

  45. Szewczak AA, Moore PB, Chan Y-L, Wool IG (1993) The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci USA 90:9581–9585

    CAS  PubMed  Google Scholar 

  46. Urlaub H, Kruft V, Bischof O, Müller E-C, Wittmann-Liebold B (1995) Protein-rRNA binding features and their structural and functional implications in ribosomes as determined by cross-linking studies. EMBO J 14:4578–4588

    Google Scholar 

  47. Bischof O, Kruft V, Wittmann-Liebold B (1994) Analysis of the puromycin binding site in the 70 S ribosome of Escherichia coli at the peptide level. J Biol Chem 269:18315–18319

    Google Scholar 

  48. Bischof O, Urlaub H, Kruft V, Wittmann-Liebold B (1995) Peptide environment of the peptidyl transferase center from Escherichia coli 70 S ribosomes as determined by thermoaffinity labeling with dihydrospiramycin. J Biol Chem 270:23060–23064

    Google Scholar 

  49. Geigenmüller U, Nierhaus KH (1986) Tetracycline can inhibit tRNA binding to the ribosomal P site as well as to the A site. Eur J Biochem 161:723–726

    Google Scholar 

  50. Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–394

    Google Scholar 

  51. Kurland CG, Jörgensen F, Richter A, Ehrenberg M, Bilgin N, Rojas AM (1990) Through the accuracy window. In: Hill WE, Dahlberg A, Garrett RA, Moore PM, Schlessinger D, Warner JR (eds) The ribosome. Structure function and evolution. American Society for Microbiology, Washington, pp 513–526

    Google Scholar 

  52. Alksne LE, Anthony RA, Liebman SW, Warner JR (1993) An accuracy center in the ribosome conserved over 2 billion years. Proc Natl Acad Sci USA 90:9538–9541

    Google Scholar 

  53. Schreiner G, Nierhaus KH (1973) Proteins involved in the binding of dihydrostreptomycin to ribosomes of Escherichia coli. J Mol Biol 81:71–82

    Google Scholar 

  54. Abad JP, Amilis R (1994) Location of the streptomycin ribosomal binding site explains its pleiotropic effects on protein biosynthesis. J Mol Biol 235:1251–1260

    Google Scholar 

  55. Montadon PE, Wagner R, Stutz E (1986) E. coll ribosomes with a C912 to U base change in the 16S rRNA are sreptomycin resistant. EMBO J 5:3705–3708

    Google Scholar 

  56. Leclerc L, Melançon P, Brakier-Gingras L (1991) Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome. Nucleic Acids Res 19:3973–3977

    Google Scholar 

  57. Leclerc D, Melancon P, Brakier-Gingras L (1987) Crosslinking of streptomycin to the 16S ribosomal RNA of Escherichia coli. Biochemistry 26:6227–6232

    Google Scholar 

  58. Lodmell JS, Gutell RR, Dahlberg AE (1995) Genetic and comparative analyses reveal an alternative secondary structure in the region of nt 912 of Escherichia coli 16S rRNA. Proc Natl Acad Sci USA 92:10555–10559

    Google Scholar 

  59. Pinard R, Payant C, Melancon P, Brakier-Gingras L (1993) The 5′ proximal helix of 16S rRNA is involved in the binding of streptomycin to the ribosome. FASEB J 7:173–176

    Google Scholar 

  60. Allen PN, Noller HF (1991) A single base substitution in 16S ribosomal RNA suppresses streptomycin dependence and increases the frequency of translational Errors. Cell 66:141–148

    Google Scholar 

  61. Dahlberg AE, Lund E, Kjeldgaard NO, Bowman CM, Nomura M (1973) Colicin E3 induced cleavage of 16S rimosomal RNA; blocking effects of certain antibiotics. Biochemistry 12:948–950

    Google Scholar 

  62. Melançon P, Lemieux C, Brakier-Gingras L (1988) A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res 16: 9631–9639

    Google Scholar 

  63. Powers T, Noller HF (1991) A functional pseudoknot in 16S ribosomal RNA. EMBO J 10:2203–2214

    Google Scholar 

  64. Brimacombe R (1992) Structure-function correlations (and discrepancies) in the 16S ribosomal RNA from Escherichia coli. Biochimie 74:319–326

    Google Scholar 

  65. Stern S, Powers T, Changchien LM, Noller HF (1989) RNA protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science 244:783–790

    Google Scholar 

  66. Powers T, Noller HF (1995) Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1:194–209

    Google Scholar 

  67. Beauclerk AAD, Cundliffe E (1987) Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol 193:661–671

    Google Scholar 

  68. Spangler EA, Blackburn EH (1985) The nucleotide sequence of the 17S ribosomal RNA gene of Tetrahymena rhermophilia and the identification of point mutations resulting in resistance to the antibiotics paromomycin and hygromycin. J Biol Chem 260:6334–6340

    Google Scholar 

  69. De Stasio EA, Moazed D, Noller HF, Dahlberg AE (1989) Mutations in 16S ribosomal RNA disrupt antibiotic-RNA interaction. EMBO J 8:1213–1216

    Google Scholar 

  70. De Stasio EA, Dahlberg AE (1990) Effects of mutagenesis of a conserved base-paired site near the decoding region of Escherichia coli 16S ribosomal RNA. J Mol Biol 212:127–133

    Google Scholar 

  71. O'Connor M, De Stasio EA, Dahlberg AE (1991) Interaction between 16S ribosomal RNA and ribosomal protein S12: differential effects of paromomycin and streptomycin. Biochimie 73:1493–1500

    Google Scholar 

  72. Allen PN, Noller HF (1989) Mutations in ribosomal proteins S4 and S12 influence the higher-order structure of 16S ribosomal RNA. J Mol Biol 208:457–468

    Google Scholar 

  73. Lando D, Cousin AM, Ojasoo T, Raynaud JP (1976) Paromomycin and dihydrostreptomycin bind to Escherichia coli ribosomes. Eur J Biochem 66:597–606

    Google Scholar 

  74. Misumi M, Nishimura T, Komai T, Tanaka N (1978) Interaction of kanamycin and related antibiotics with the large subunit of ribosomes and the inhibition of translocation. Biochem Biophys Res Commun 84:358–365

    Google Scholar 

  75. Wurmbach P, Nierhaus KH (1983) The inhibition pattern of antibiotics on the extent and accuracy of tRNA binding to the ribosome and their effect on the subsequent steps in chain elongation. Eur J Biochem 130:9–12

    Google Scholar 

  76. Wool IG, Endo Y, Chan Y-L, Glück A (1990) Structure, Function, and Evolution of Mammalian Ribosomes. In: Hill WE, Dahlberg A, Garrett RA, Moore PM, Schlessinger D, Warner JR (eds) The ribosome. structure function and evolution. American Society for Microbiology, Washington, pp 203–214

    Google Scholar 

  77. Hausner TP, Atmadja J, Nierhaus KH (1987) Evidence that the G2661 region of the 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69:911–923

    Google Scholar 

  78. Moazed D, Robertson JM, Noller HF (1988) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S rRNA. Nature 334:362–364

    Article  CAS  PubMed  Google Scholar 

  79. Parmeggiani A, Swart GWM (1985) Mechanism of action of kirromycin-like antibiotics. Annu Rev Microbiol 39:557–577

    Google Scholar 

  80. Berchtold H, Reshetnikova L, Reiser COA, Schirmer NK, Sprinzl M, Hilgenfeld R (1993) Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365:126–132

    Google Scholar 

  81. Kjeldgaard M, Nissen P, Thirup S, Nyborg J (1993) The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1:35–50

    Google Scholar 

  82. Mesters JR, Zeef LAH, Hilgenfeld R, de Graaf JM, Kraal B, Bosch L (1994) The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli. EMBO J 13:4877–4885

    Google Scholar 

  83. Van Noort JM, Kraal B, Bosch L, la Cour TFM, Nyborg J, Clark BFC (1984) Cross-linking of tRNA at two different sites of the elongation factor Tu. Proc Natl Acad Sci USA 81:3969–3972

    Google Scholar 

  84. Alexander C, Bilgin N, Lindschau C, Mesters JR, Kraal B, Hilgenfeld R, Erdmann VA, Lippmann C (1995) Phosphorylation of elongation facroe Tu prevents ternary complex formation. J Biol Chem 270:14541–14547

    Google Scholar 

  85. Rodnina MV, Fricke R, Kuhn L, Wintermeyer W (1995) Co-don-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO J 14:2613–2619

    Google Scholar 

  86. Tubulekas I, Buckingham RH, Hughes D (1991) Mutant ribosomes can generate dominant kirromycin resistance. J Bacteriol 173:3635–3643

    Google Scholar 

  87. Wolf H, Assmann D, Fischer E (1978) Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA. Proc Natl Acad Sci USA 75:5324–5328

    Google Scholar 

  88. Zeef LAH, Bosch L, Anbrgh PH, Cetin R, Parmeggiani A, Hilgenfeld R (1994) Pulvomycin-resistant mutants of E. coli elongation factor Tu. EMBO J 13:5113–5120

    Google Scholar 

  89. Anborgh PH, Parmeggiani A (1991) New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu. EMBO J 10:779–784

    CAS  PubMed  Google Scholar 

  90. Schulze H, Nierhaus KH (1982) Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity. EMBO J 1:609–613

    Google Scholar 

  91. Franceschi FJ, Nierhaus KH (1990) Ribosomal proteins L15 and L16 are mere late assembly proteins of the large ribosomal subunit. J Biol Chem 265:16676–16682

    Google Scholar 

  92. Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:1416–1419

    Google Scholar 

  93. Noller HF (1993) Peptidyl transferase: protein, ribonucleoprotein, or RNA? J Bacteriol 175:5297–5300

    Google Scholar 

  94. Cooperman BS, Weitzman CJ, Fernández CL (1990) Antibiotic probes of Escherichia coli ribosomal peptidyltransferase. In: Hill WE, Dahlberg A, Garrett RA, Moore PM, Schlessinger D, Warner JR (eds) The ribosome. structure function and evolution. American Society for Microbiology, Washington, pp 479–490

    Google Scholar 

  95. Samaha RR, Green R, Noller HF (1995) A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377:309–314

    Google Scholar 

  96. Rodriguez-Fonseca C, Amilis R, Garrett RA (1995) Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic ribosome complexes. J Mol Biol 247:224–235

    Google Scholar 

  97. Vester B, Garrett RA (1988) The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. EMBO J 7:3577–3587

    Google Scholar 

  98. Rheinberger HJ, Nierhaus KH (1990) Partial release of AcPhe-Phe-tRNA from ribosomes during poly(U)-dependent poly(Phe) synthesis and the effects of chloramphenicol. Eur J Biochem 193:643–650

    Google Scholar 

  99. Menninger JR, Otto DP (1982) Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes. Antimicrob Agents Chemother 21:810–818.

    Google Scholar 

  100. Moazed D, Noller HF (1987) Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69:879–884

    Google Scholar 

  101. Saarma U, Remme J (1992) Novel mutants of 23S RNA: characterization of functional properties. Nucleic Acids Res 20:3147–3152

    Google Scholar 

  102. Douthwaite S (1992) Functional Interactions within 23S rRNA Involving the Peptidyltransferase Center. J Bacteriol 174:1333–1338

    Google Scholar 

  103. Nierhaus D, Nierhaus KH (1973) Identification of the chloramphenicol-binding protein in Escherichia coli ribosomes by partial reconstitution. Proc Natl Acad Sci USA 70:2224–2228

    Google Scholar 

  104. Dinos G, Synetos D, Coutsogeorgopoulos C (1993) Interaction between the antibiotic spiramycin and a ribosomal complex active in peptide bond formation. Biochemistry 32:10638–10647

    Google Scholar 

  105. Menninger JR, Coleman RA (1993) Lincosamide antibiotics stimulate dissociation of peptidyl-tRNA from ribosomes. Antimicrob Agents Chemother 37:2027–2029

    Google Scholar 

  106. Arevalo MA, Tejedor F, Polo F, Ballesta JP (1988) Protein components of the erythromycin binding site in bacterial ribosomes. J Biol Chem 263:58–63

    Google Scholar 

  107. Douthwaite S (1992) Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA. Nucleic Acids Res 20:4717–4720

    Google Scholar 

  108. Douthwaite S, Aagaard C (1993) Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase Loop. J Mol Biol 232:725–731

    Google Scholar 

  109. Teraoka H, Nierhaus KH (1978) Proteins from Escherichia coli ribosomes involved in binding of erythromycin. J Mol Biol 126:185–193

    Google Scholar 

  110. Lotti M, Dabbs ER, Hasenbank R, Stöffler-Meilike M, Stöffler G (1983) Characterisation of a mutant from Escherichia coli lacking protein L15 and localisation of protein L15 by immuno-electron microscopy. Mol Gen Genet 192:295–300

    Google Scholar 

  111. Chittum HS, Champney WS (1994) Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol 176:6192–6198

    Google Scholar 

  112. Tejedor F, Ballesta JPG (1986) Reaction of some macrolide antibiotics with the ribosome. Labeling of the binding site components. Biochemistry 25:7725–7731

    Google Scholar 

  113. de Bethune M-P, Nierhaus KH (1978) Characterisation of the binding of Virginiamycin S to Escherichia coli ribosomes. Eur J Biochem 86:187–191

    Google Scholar 

  114. Di Giambattista M, Nyssen E, Pecher A, Cocito C (1990) Affinity labeling of the virginiamycin S binding site on bacterial ribosome. Biochemistry 9:9203–9211

    Google Scholar 

  115. Vannuffel P, Di Giambattista M, Cocito C (1994) Chemical probing of a virginiamycin M-promoted conformational change of the peptidyl-transferase domain. Nucleic Acids Res 22:4449–4453

    Google Scholar 

  116. Vannuffel P, Di Giambattista M, Cocito C (1992) The role of rRNA bases in the interaction of peptidyltransferase inhibitors with bacterial ribosomes. J Biol Chem 267:16114–16120

    Google Scholar 

  117. Sköld SE (1983) Chemical crosslinking of elongation factor G to the 23S rRNA in 70S ribosomes from Escherichia coli. Nucleic Acids Res 11:4923–4932

    Google Scholar 

  118. Miller SP, Bodley JW (1991) α-Sarcin cleavage of ribosomal RNA is inhibited by the binding of elongation factor G or thiostrepton to the ribosome. Nucleic Acids Res 19:1657–1660

    Google Scholar 

  119. Mankin AS, Leviev I, Garrett RA (1994) Cross-hypersensitivity effects of mutations in 23 S rRNA yield insight into aminoacyl-tRNA binding. J Mol Biol 244:151–157

    Google Scholar 

  120. Egebjerg J, Douthwaite S, Garrett RA (1989) Antibiotic interactions at the GTPase-associated centre within Escherichia coli 23S rRNA. EMBO J 8:607–611

    Google Scholar 

  121. Egebjerg J, Douthwaite S, Liljas A, Garrett RA (1990) Characterization of the binding sites of protein L11 and the L10.(L12)4 pentameric complex in the GTPase domain of 23 S ribosomal RNA from Escherichia coli. J Mol Biol 213:275–288

    Google Scholar 

  122. Ryan PC, Lu M, Draper DE (1991) Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol 221:1257–1268

    Google Scholar 

  123. Rosendahl G, Douthwait S (1993) Ribosomal Proteins III and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre. J Mol Biol 234:1013–1020

    Google Scholar 

  124. Thompson J, Cundliffe E, Dahlberg AE (1988) Site-directed mutagenesis of Escherichia coli 23 S ribosomal RNA at position 1067 within the GTP hydrolysis centre. J Mol Biol 203:457–465

    Google Scholar 

  125. Rosendahl G, Douthwaite S (1994) The antibiotics micrococcin and thiostrepton interact directely with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res 22:357–363

    Google Scholar 

  126. Thompson J, Musters W, Cundliffe E, Dahlberg AE (1993) Replacement of the L11 binding region within E. coli 23S ribosomal RNA with ist homologue from yeast: in vivo and in vitro analysis of hybrid ribosomes altered in the GTPase centre. EMBO J 12:1499–1504

    Google Scholar 

  127. Uchiumi T, Wada A, Kominami R (1995) A base substitution within the GTPase-associated domain of mammalian 28 S ribosomal RN A causes high thiostrepton accessibility. J Biol Chem 270:29889–29893

    Google Scholar 

  128. Thompson J, Cundliffe E (1991) The binding of thiostrepton to 23S ribosomal RNA. Biochimie 73:1131–1135

    Google Scholar 

  129. Ryan PC, Draper DE (1991) Detection of a tertiary interaction in the highly conserved GTPase center of large subunit ribosomal RNA. Proc Natl Acad Sci USA 88:6308–6312

    Google Scholar 

  130. Cundliffe E (1986) Involvement of specific portions of ribosomal RNA in defined ribosoamal functions: a study utilizing antibiotics. In: Hardesty B, Kramer G (eds) Structure, function, and genetics of ribosomes. Springer, Berlin Heidelberg New York, pp 586–604

    Google Scholar 

  131. Draper DE, Xing Y, Laing LG (1995) Thermodynamics of RNA unfolding: stabilization of a ribosomal RNA tertiary structure by thiostrepton and ammonium Ion. J Mol Biol 249:231–238

    Google Scholar 

  132. Kutay UR, Spahn CMT, Nierhaus KH (1990) Similarities and differences in the inhibition patterns of thiostrepton and viomycin: evidence for two functionally different populations of P sites when occupied with AcPhe-tRNA. Biochim Biophys Acta 1050:193–196

    Google Scholar 

  133. Yamada T, Mizugichi Y, Nierhaus KH, Wittmann HG (1978) Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 275:460–461

    Google Scholar 

  134. Powers T, Noller HF (1994) Selective perturbation of G530 of 16 S rRNA by translational miscoding agents and a streptomycin-dependence mutation in Protein S12. J Mol Biol 235:156–172

    Google Scholar 

  135. Yamada T, Nierhaus KH (1978) Viomycin favours the formation of 70S ribosome couples. Mol Gen Genet 161:261–265

    Google Scholar 

  136. Bilgin N, Richter AA, Ehrenberg, M, Dahlberg AE, Kurland CG (1990) Ribosomal RNA and protein mutants resistant to spectinomycin. EMBO J 9:735–739

    Google Scholar 

  137. Piepersberg W, Bock A, Yaguchi M, Wittmann HG (1975) Genetic position and amino acid replacements of several mutations in ribosomal protein S5 from Escherichia coli. Mol Gen Genet 143:43–52

    Google Scholar 

  138. Sigmund C, Ettayebi M, Morgan E (1984) Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. N ucleic Acids Res 12:4653–4663

    Google Scholar 

  139. Makosky PC, Dahlberg AE (1987) Spectinomycin resistance at site 1192 in 16S ribosomal RNA of E. coli: an analysis of three mutants. Biochimie 69:885–889

    Google Scholar 

  140. Brink MF, Brink G, Verbeet MP, de Boer HA (1994) Spectinomycin interacts specifically with the residues G1064 and C1192 in 16S rRNA, thereby potentially freezing this molecule into an inactive conformation. Nucleic Acids Res 22:325–331

    Google Scholar 

  141. Johanson U, Hughes D (1995) A new mutation in 16S rRNA of Escherichia coli conferring spectinomycin resistance. Nucleic Acids Res 23:464–466

    Google Scholar 

  142. Samaha RR, O'Brien B, O'Brien TW, Noller HF (1994) Independent in vitro assembly of a ribonucleoprotein particle containing the 3′ domain of 16S rRNA. Proc Natl Acad Sci USA 91:7884–7888

    Google Scholar 

  143. Ramakrishnan V, White SW (1992) The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature 358:768–771

    Google Scholar 

  144. Prescott CD, Kornau HC (1992) Mutations in E. coli 16S rRNA that enhance and decrease the activity of a suppressor tRNA. Nucleic Acids Res 20:1567–1571

    Google Scholar 

  145. Moine H, Dahlberg AE (1994) Mutations in helix 34 of Escherichia coli 16S ribosomal RNA have multiple effects on ribosome function and synthesis. J Mol Biol 243:402–412

    Google Scholar 

  146. Willie GR, Richman N, Godfredsen WO, Bodley JW (1975) Some characteristics of and structural requirements for the interaction of 24, 25-dihydrofusidic acid with ribosome elongation factor G complexes. Biochemistry 14:1713–1718

    Google Scholar 

  147. Johanson U, Hughes D (1994) Fusidic acid-resistant mutations define three regions in elongation factor G of Salmonella typhimurium. Gene 143:55–59

    Google Scholar 

  148. von Ahsen U, Davies J, Schroeder R (1993) Antibiotic inhibition of group I ribozyme function. Nature 1993:368–370

    Google Scholar 

  149. Stage TK, Hertel KJ, Uhlenbeck OC (1995) Inhibition of the hammerhead ribozyme by neomycin. RNA 1:95–101

    Google Scholar 

  150. Zapp ML, Stern S, Green MR (1993) Small molecules that selectively block RNA binding of HIV-I Rev protein inhibit Rev function and viral production. Cell 74:969–978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spahn, C.M.T., Prescott, C.D. Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74, 423–439 (1996). https://doi.org/10.1007/BF00217518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217518

Key words

Navigation